

Certificate:12108522November 1, 2018

Clifford Kettemborough

LDP Essentials - Australia

has completed the course

CERTIFICATE OF COMPLETION

American Certification Institute

Clifford Kettemborough
is hereby certified as a

Certified International ITIL/ITSM Professional
(iITIL/ITSM)

As an it management professional, this includes the responsibility to maintain the highest ethical
practice to favorably reflect upon the profession.

Given at Lewes, Delaware, the United States

Certification ID: ACI: 2200614106
Issue Date: June 16, 2017
Expiration Date: Never

President, Certification Committee

American Certification Institute

Clifford Kettemborough
is hereby certified as a

Certified International IT Security Manager
(IT SM)

As an it management professional, this includes the responsibility to maintain the highest ethical
practice to favorably reflect upon the profession.

Given at Lewes, Delaware, the United States

Certification ID: ACI: 2200613107
Issue Date: May 26, 2016
Expiration Date: Never

President, Certification Committee

Clifford R Kettemborough, Ph.D., D.B.A., Ed.D

is awarded the designation Certified ScrumMaster® on
this day, June 30, 2010, for completing the prescribed

requirements for this certification and is hereby entitled to
all privileges and benefits offered by SCRUM ALLIANCE®.

Certificant ID: 000099653 Certification Active through: 07 November 2022

Certified Scrum Trainer® Chairman of the Board

Clifford R Kettemborough, Ph.D., D.B.A., Ed.D

is awarded the designation Certified Scrum Professional® -
 ScrumMaster on this day, April 12, 2018, for completing
the prescribed requirements for this certification and is
hereby entitled to all privileges and benefits offered by

SCRUM ALLIANCE®.

Certificant ID: 000099653 Certification Active through: 06 November 2022 Certified Since: 04 November 2010

Chairman of the Board

Certificate No: LSSGB.9891.001

Clifford R. Kettemborough

Has satisfactorily fulfilled the requirements established
By Redstone Learning for professional attainment in

Lean Six Sigma Green Belt
The certification acknowledges the technical expertise and the ability to

apply quality methodologies to drive business improvement and increase
customer satisfaction.

 July 14th 2016 Nabin Roy, COO

Redstone Learning

Certified Scrum Trainer Chairman of the Board

Clifford R. Kettemborough, Ph.D., D.B.A.,

Ed.D
June 30th 2010

[MEMBER: 000099653] [EXPIRES: 2012-11-04]

Chairman of the Board

Clifford R. Kettemborough, Ph.D., D.B.A.,

Ed.D
November 4th 2010

[MEMBER: 000099653] [Certification expires: 04 Nov 12]

Capability Maturity Model for Software (CMM)

Welcome

Capability
Maturity
Modeling

Team &
Personal
Software
Process

IDEAL Model

Risk
Management

Software
Engineering
Measurement &
Analysis (SEMA)

Software
Engineering
Information
Repository
(SEIR)

Software
Process
Improvement
Networks
(SPINs)

Appraiser
Program

Acronyms

SEI Initiatives

Conferences

Education &
Training

Capability Maturity Model® for Software (SW-CMM®)

The Capability Maturity Model for Software (also known as the CMM and SW-CMM)
has been a model for judging the maturity of the software processes of an organization
for many years now. This model helped organizations identify the key practices
required to help them increase the maturity of these processes.

The SW-CMM was developed by the software community with stewardship by the SEI.
This model is one of the models that provided the basis for the CMMI Product Suite. As
a result, a sunset policy was established by the SEI to help SW-CMM users upgrade to
CMMI. For more information about the sunset policy, see How Will Sunsetting of the
Software CMM Be Conducted?

The Software CMM became a de facto standard for assessing and improving software
processes. Through the SW-CMM, other CMMs, and now CMMI, the SEI and process
improvement community established an effective means of modeling, defining, and
measuring the maturity of the processes used by organizations developing and
maintaining software-intensive systems.

For more information about the SW-CMM legacy model see

● A brief summary of SW-CMM concepts
● Links to SW-CMM model documents
● Links to CMM-related articles

http://www.sei.cmu.edu/cmm/cmm.html (1 of 2) [3/16/2004 4:40:28 PM]

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/cmm/cmm.html?owner=cb
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/sei-home.html
http://www.sei.cmu.edu/sei-home.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/tsp/
http://www.sei.cmu.edu/tsp/
http://www.sei.cmu.edu/ideal/ideal.html
http://www.sei.cmu.edu/ideal/ideal.html
http://www.sei.cmu.edu/programs/sepm/risk/index.html
http://www.sei.cmu.edu/programs/sepm/risk/index.html
http://www.sei.cmu.edu/sema/welcome.html
http://www.sei.cmu.edu/sema/welcome.html
http://seir.sei.cmu.edu/
http://seir.sei.cmu.edu/
http://www.sei.cmu.edu/collaborating/spins/spins.html
http://www.sei.cmu.edu/collaborating/spins/spins.html
http://www.sei.cmu.edu/managing/app.directory.html
http://www.sei.cmu.edu/managing/app.directory.html
http://www.sei.cmu.edu/about/acronyms/help.acronyms.html
http://www.sei.cmu.edu/about/acronyms/help.acronyms.html
http://www.sei.cmu.edu/about/overview/sei/initiatives.html
http://www.sei.cmu.edu/about/overview/sei/initiatives.html
http://www.sei.cmu.edu/products/events/events.html
http://www.sei.cmu.edu/products/events/events.html
http://www.sei.cmu.edu/products/courses/courses.html
http://www.sei.cmu.edu/products/courses/courses.html
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html
http://www.sei.cmu.edu/cmmi/
http://www.sei.cmu.edu/cmmi/adoption/sunset.html
http://www.sei.cmu.edu/cmmi/adoption/sunset.html

Capability Maturity Model for Software (CMM)

● Who to contact for more information

Return to top of the page

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2004 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/cmm/cmm.html
Last Modified: 8 January 2004

http://www.sei.cmu.edu/cmm/cmm.html (2 of 2) [3/16/2004 4:40:28 PM]

http://www.sei.cmu.edu/about/disclaimer.html

Capability Maturity Models

Welcome

Capability
Maturity
Modeling

Team &
Personal
Software
Process

IDEAL Model

Risk
Management

Software
Engineering
Measurement &
Analysis (SEMA)

Software
Engineering
Information
Repository
(SEIR)

Software
Process
Improvement
Networks
(SPINs)

Appraiser
Program

Acronyms

SEI Initiatives

Conferences

Education &
Training

Capability Maturity Models®

The SEI is often identified with its CMM® work. Over the years, the SEI has developed
six Capability Maturity Model products. Some are new and build on the work of the
older ones.

CMMs that the SEI is currently involved in developing, expanding, or maintaining are

● CMMI®(Capability Maturity Model Integration)
● P-CMM (People Capability Maturity Model)
● SA-CMM (Software Acquisition Capability Maturity Model)

Legacy CMMs that have been incorporated into CMMI models, and therefore are no
longer maintained are

● Capability Maturity Model for Software (SW-CMM)
● Systems Engineering Capability Maturity Model (SE-CMM)
● Integrated Product Development Capability Maturity Model (IPD-CMM)

SEI work that is very closely related to the development, support, and maintenance of
CMMs includes

● Publishing appraisal results - in the Maturity Profile
● Working with standards organizations to help further the cause of for software

process improvement
● Improving and supporting CMM-based appraisals of organizations

The SEI's goals in developing CMMs include

● addressing software engineering and other disciplines that have an affect on
software development and maintenance

● providing integrated process improvement reference models
● building broad community consensus
● harmonizing with related standards
● enabling efficient improvement across disciplines relevant to software

development and maintenance

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

http://www.sei.cmu.edu/cmm/cmms/cmms.html (1 of 2) [3/16/2004 4:40:31 PM]

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/cmm/cmms/cmms.html?owner=wcp
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/sei-home.html
http://www.sei.cmu.edu/sei-home.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/tsp/
http://www.sei.cmu.edu/tsp/
http://www.sei.cmu.edu/ideal/ideal.html
http://www.sei.cmu.edu/ideal/ideal.html
http://www.sei.cmu.edu/programs/sepm/risk/index.html
http://www.sei.cmu.edu/programs/sepm/risk/index.html
http://www.sei.cmu.edu/sema/welcome.html
http://www.sei.cmu.edu/sema/welcome.html
http://seir.sei.cmu.edu/
http://seir.sei.cmu.edu/
http://www.sei.cmu.edu/collaborating/spins/spins.html
http://www.sei.cmu.edu/collaborating/spins/spins.html
http://www.sei.cmu.edu/managing/app.directory.html
http://www.sei.cmu.edu/managing/app.directory.html
http://www.sei.cmu.edu/about/acronyms/help.acronyms.html
http://www.sei.cmu.edu/about/acronyms/help.acronyms.html
http://www.sei.cmu.edu/about/overview/sei/initiatives.html
http://www.sei.cmu.edu/about/overview/sei/initiatives.html
http://www.sei.cmu.edu/products/events/events.html
http://www.sei.cmu.edu/products/events/events.html
http://www.sei.cmu.edu/products/courses/courses.html
http://www.sei.cmu.edu/products/courses/courses.html
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html
http://www.sei.cmu.edu/cmmi/
http://www.sei.cmu.edu/cmm-p/
http://www.sei.cmu.edu/arm/SA-CMM.html

Capability Maturity Models

Copyright 2004 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/cmm/cmms/cmms.html
Last Modified: 8 January 2004

http://www.sei.cmu.edu/cmm/cmms/cmms.html (2 of 2) [3/16/2004 4:40:31 PM]

http://www.sei.cmu.edu/about/disclaimer.html

Legacy Capability Maturity Models (CMMs)

Welcome

Capability
Maturity
Modeling

Team &
Personal
Software
Process

IDEAL Model

Risk
Management

Software
Engineering
Measurement &
Analysis (SEMA)

Software
Engineering
Information
Repository
(SEIR)

Software
Process
Improvement
Networks
(SPINs)

Appraiser
Program

Acronyms

SEI Initiatives

Conferences

Education &
Training

Legacy Capability Maturity Models® (CMMs®)

CMM products that have been incorporated into CMMI® products include three legacy
models. The SW-CMM, SE-CMM, IPD-CMM, and EIA 731 provided the basis for the
CMMI Product Suite, initially released in 2001. The development characteristics and
delivery methods of these models were integrated to form CMMI products that enable
users to reduce the cost of performing appraisals and implementing improvements as
they pursue enterprise-wide process improvement.

The CMMI Product Suite includes a framework for generating CMMI models and a set
of CMMI models produced by the framework. The framework includes common
elements and best features of the legacy models as well as rules and methods for
generating CMMI models. Discipline-specific elements (e.g., software, systems
engineering) of the CMMI Product Suite enable organizations to select elements most
important to them.

For more information about CMMI, see Capability Maturity Model Integration (CMMI)
and CMMI Frequently Asked Questions (FAQ)

For more information about the legacy CMMs, see

● Capability Maturity Model for Software (SW-CMM)
● Systems Engineering Capability Maturity Model (SE-CMM)
● Integrated Product Development Capability Maturity Model (IPD-CMM)

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2004 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/cmm/cmms/transition.html
Last Modified: 8 January 2004

http://www.sei.cmu.edu/cmm/cmms/transition.html [3/16/2004 4:40:33 PM]

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/cmm/cmms/transition.html?owner=wcp
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/sei-home.html
http://www.sei.cmu.edu/sei-home.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/tsp/
http://www.sei.cmu.edu/tsp/
http://www.sei.cmu.edu/ideal/ideal.html
http://www.sei.cmu.edu/ideal/ideal.html
http://www.sei.cmu.edu/programs/sepm/risk/index.html
http://www.sei.cmu.edu/programs/sepm/risk/index.html
http://www.sei.cmu.edu/sema/welcome.html
http://www.sei.cmu.edu/sema/welcome.html
http://seir.sei.cmu.edu/
http://seir.sei.cmu.edu/
http://www.sei.cmu.edu/collaborating/spins/spins.html
http://www.sei.cmu.edu/collaborating/spins/spins.html
http://www.sei.cmu.edu/managing/app.directory.html
http://www.sei.cmu.edu/managing/app.directory.html
http://www.sei.cmu.edu/about/acronyms/help.acronyms.html
http://www.sei.cmu.edu/about/acronyms/help.acronyms.html
http://www.sei.cmu.edu/about/overview/sei/initiatives.html
http://www.sei.cmu.edu/about/overview/sei/initiatives.html
http://www.sei.cmu.edu/products/events/events.html
http://www.sei.cmu.edu/products/events/events.html
http://www.sei.cmu.edu/products/courses/courses.html
http://www.sei.cmu.edu/products/courses/courses.html
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html
http://www.sei.cmu.edu/cmmi/
http://www.sei.cmu.edu/cmmi/
http://www.sei.cmu.edu/cmmi/adoption/cmmi-faq.html
http://www.sei.cmu.edu/cmm/
http://www.sei.cmu.edu/cmm/se-cmm.html
http://www.sei.cmu.edu/cmm/ipd-cmm.html
http://www.sei.cmu.edu/about/disclaimer.html

Software Capability Maturity Model (SW-CMM)

Welcome

Capability
Maturity
Modeling

Team &
Personal
Software
Process

IDEAL Model

Risk
Management

Software
Engineering
Measurement &
Analysis (SEMA)

Software
Engineering
Information
Repository
(SEIR)

Software
Process
Improvement
Networks
(SPINs)

Appraiser
Program

Acronyms

SEI Initiatives

Conferences

Education &
Training

Capability Maturity Model® (SW-CMM®) for Software

The Capability Maturity Model for Software describes the principles and practices
underlying software process maturity and is intended to help software organizations
improve the maturity of their software processes in terms of an evolutionary path from
ad hoc, chaotic processes to mature, disciplined software processes. The CMM is
organized into five maturity levels:

1) Initial. The software process is characterized as ad hoc, and occasionally even
chaotic. Few processes are defined, and success depends on individual effort and
heroics.

2) Repeatable. Basic project management processes are established to track cost,
schedule, and functionality. The necessary process discipline is in place to repeat
earlier successes on projects with similar applications.

3) Defined. The software process for both management and engineering activities is
documented, standardized, and integrated into a standard software process for the
organization. All projects use an approved, tailored version of the organization's
standard software process for developing and maintaining software.

4) Managed. Detailed measures of the software process and product quality are
collected. Both the software process and products are quantitatively understood and
controlled.

5) Optimizing. Continuous process improvement is enabled by quantitative feedback
from the process and from piloting innovative ideas and technologies.

Predictability, effectiveness, and control of an organization's software processes are
believed to improve as the organization moves up these five levels. While not rigorous,
the empirical evidence to date supports this belief.

Except for Level 1, each maturity level is decomposed into several key process areas
that indicate the areas an organization should focus on to improve its software process.

The key process areas at Level 2 focus on the software project's concerns related to
establishing basic project management controls. They are Requirements Management,
Software Project Planning, Software Project Tracking and Oversight, Software
Subcontract Management, Software Quality Assurance, and Software Configuration
Management.

The key process areas at Level 3 address both project and organizational issues, as
the organization establishes an infrastructure that institutionalizes effective software
engineering and management processes across all projects. They are Organization
Process Focus, Organization Process Definition, Training Program, Integrated Software
Management, Software Product Engineering, Intergroup Coordination, and Peer

http://www.sei.cmu.edu/cmm/cmm.sum.html (1 of 3) [3/16/2004 4:40:37 PM]

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/cmm/cmm.sum.html?owner=sshrum
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/sei-home.html
http://www.sei.cmu.edu/sei-home.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/tsp/
http://www.sei.cmu.edu/tsp/
http://www.sei.cmu.edu/ideal/ideal.html
http://www.sei.cmu.edu/ideal/ideal.html
http://www.sei.cmu.edu/programs/sepm/risk/index.html
http://www.sei.cmu.edu/programs/sepm/risk/index.html
http://www.sei.cmu.edu/sema/welcome.html
http://www.sei.cmu.edu/sema/welcome.html
http://seir.sei.cmu.edu/
http://seir.sei.cmu.edu/
http://www.sei.cmu.edu/collaborating/spins/spins.html
http://www.sei.cmu.edu/collaborating/spins/spins.html
http://www.sei.cmu.edu/managing/app.directory.html
http://www.sei.cmu.edu/managing/app.directory.html
http://www.sei.cmu.edu/about/acronyms/help.acronyms.html
http://www.sei.cmu.edu/about/acronyms/help.acronyms.html
http://www.sei.cmu.edu/about/overview/sei/initiatives.html
http://www.sei.cmu.edu/about/overview/sei/initiatives.html
http://www.sei.cmu.edu/products/events/events.html
http://www.sei.cmu.edu/products/events/events.html
http://www.sei.cmu.edu/products/courses/courses.html
http://www.sei.cmu.edu/products/courses/courses.html
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Software Capability Maturity Model (SW-CMM)

Reviews.

The key process areas at Level 4 focus on establishing a quantitative understanding of
both the software process and the software work products being built. They are
Quantitative Process Management and Software Quality Management.

The key process areas at Level 5 cover the issues that both the organization and the
projects must address to implement continual, measurable software process
improvement. They are Defect Prevention, Technology Change Management, and
Process Change Management.

Each key process area is described in terms of the key practices that contribute to
satisfying its goals. The key practices describe the infrastructure and activities that
contribute most to the effective implementation and institutionalization of the key
process area.

For a more detailed overview of the CMM, see:

● Mark C. Paulk, Bill Curtis, Mary Beth Chrissis, and Charles V. Weber,
"Capability Maturity Model, Version 1.1," IEEE Software, Vol. 10, No. 4, July
1993, pp. 18-27.

or the CMM itself. Version 1.1 of the CMM, which was released in 1993, is now
available as a book:

● Carnegie Mellon University, Software Engineering Institute (Principal
Contributors and Editors: Mark C. Paulk, Charles V. Weber, Bill Curtis, and
Mary Beth Chrissis), The Capability Maturity Model: Guidelines for Improving
the Software Process, ISBN 0-201-54664-7, Addison-Wesley Publishing
Company, Reading, MA, 1995.

For information on the benefits of CMM-based software process improvement, see:

● James Herbsleb, Anita Carleton, et al., "Benefits of CMM-Based Software
Process Improvement: Initial Results," Software Engineering Institute, CMU/SEI-
94-TR-13, August 1994.

● Patricia K. Lawlis, Robert M. Flowe, and James B. Thordahl, "A Correlational
Study of the CMM and Software Development Performance," Crosstalk: The
Journal of Defense Software Engineering, Vol. 8, No. 9, September 1995, pp.
21-25.

Also see the CMM-related articles.

Return to top of the page

Return to main page

http://www.sei.cmu.edu/cmm/cmm.sum.html (2 of 3) [3/16/2004 4:40:37 PM]

mailto:sshrum@sei.cmu.edu?Subject=cmm.sum.html

Software Capability Maturity Model (SW-CMM)

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2004 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/cmm/cmm.sum.html
Last Modified: 8 January 2004

http://www.sei.cmu.edu/cmm/cmm.sum.html (3 of 3) [3/16/2004 4:40:37 PM]

http://www.sei.cmu.edu/about/disclaimer.html

Software CMM Articles and Papers

Welcome

Capability
Maturity
Modeling

Team &
Personal
Software
Process

IDEAL Model

Risk
Management

Software
Engineering
Measurement &
Analysis (SEMA)

Software
Engineering
Information
Repository
(SEIR)

Software
Process
Improvement
Networks
(SPINs)

Appraiser
Program

Acronyms

SEI Initiatives

Conferences

Education &
Training

Software CMM® Articles and Papers

Mark C. Paulk, Bill Curtis, Mary Beth Chrissis, and Charles V. Weber, "Capability
Maturity Model, Version 1.1," IEEE Software, Vol. 10, No. 4, July 1993, pp. 18-27.

This paper provides an overview of the latest version of the Capability Maturity Model
for Software, CMM v1.1. Based on over six years of experience with software process
improvement and the contributions of hundreds of reviewers, CMM v1.1 describes the
software engineering and management practices that characterize organizations as
they mature their processes for developing and maintaining software. This paper
stresses the need for a process maturity framework to prioritize improvement actions,
describes the process maturity framework of five maturity levels and the associated
structural components, and discusses future directions for the CMM.

Mark C. Paulk, "A Comparison of ISO 9001 and the Capability Maturity Model for
Software," Software Engineering Institute, CMU/SEI-94-TR-12, July 1994.

The Capability Maturity Model for Software (CMM), developed by the Software
Engineering Institute, and the ISO 9000 series of standards, developed by the
International Standards Organization, share a common concern with quality and
process management. The two are driven by similar concerns and intuitively correlated.
The purpose of this report is to contrast the CMM and ISO 9001, showing both their
differences and their similarities. The results of the analysis indicate that, although an
ISO 9001- compliant organization would not necessarily satisfy all of the level 2 key
process areas, it would satisfy most of the level 2 goals and many level 3 goals.
Because there are practices in the CMM that are not addressed in ISO 9000, it is
possible for a level 1 organization to receive 9001 registration; similarly, there are areas
addressed by ISO 9001 that are not addressed in the CMM. A level 3 organization
would have little difficulty in obtaining ISO 9001 certification, and a level 2 organization
would have significant advantages in obtaining certification.

This report is based on the 1987 release of ISO 9001. The paper "How ISO 9001
Compares With the CMM," IEEE Software, January 1995, is less detailed, but it is
based on the 1994 release of ISO 9001. Note that Figure 1 has become corrupted in
the on-line version of the paper.

Mark C. Paulk, "Questions and Answers on the CMM," Issue #1, 5 April 1994.

Discusses tailoring the CMM, the key process area template for CMM v1.1, and
documentation for small/prototyping projects.

http://www.sei.cmu.edu/cmm/cmm.articles.html (1 of 8) [3/16/2004 4:40:44 PM]

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/cmm/cmm.articles.html?owner=sshrum
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/sei-home.html
http://www.sei.cmu.edu/sei-home.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/tsp/
http://www.sei.cmu.edu/tsp/
http://www.sei.cmu.edu/ideal/ideal.html
http://www.sei.cmu.edu/ideal/ideal.html
http://www.sei.cmu.edu/programs/sepm/risk/index.html
http://www.sei.cmu.edu/programs/sepm/risk/index.html
http://www.sei.cmu.edu/sema/welcome.html
http://www.sei.cmu.edu/sema/welcome.html
http://seir.sei.cmu.edu/
http://seir.sei.cmu.edu/
http://www.sei.cmu.edu/collaborating/spins/spins.html
http://www.sei.cmu.edu/collaborating/spins/spins.html
http://www.sei.cmu.edu/managing/app.directory.html
http://www.sei.cmu.edu/managing/app.directory.html
http://www.sei.cmu.edu/about/acronyms/help.acronyms.html
http://www.sei.cmu.edu/about/acronyms/help.acronyms.html
http://www.sei.cmu.edu/about/overview/sei/initiatives.html
http://www.sei.cmu.edu/about/overview/sei/initiatives.html
http://www.sei.cmu.edu/products/events/events.html
http://www.sei.cmu.edu/products/events/events.html
http://www.sei.cmu.edu/products/courses/courses.html
http://www.sei.cmu.edu/products/courses/courses.html
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html
http://www.sei.cmu.edu/publications/documents/94.reports/94.tr.012.html
http://www.sei.cmu.edu/publications/documents/94.reports/94.tr.012.html

Software CMM Articles and Papers

Mark C. Paulk, "Questions and Answers on the CMM," Issue #2, 2 August 1994.

Questions and answers on general topics, Requirements Management, Software
Project Planning, Software Quality Assurance, Organization Process Definition,
Training Program, Integrated Software Management, and Peer Reviews.

Mark C. Paulk, "Questions and Answers on the CMM," Issue #3, 29 March 1996.

Questions and answers on Intergroup Coordination and Training Program.

Mark C. Paulk, "Questions and Answers on the CMM," Issue #4, 7 April 1997.

Questions and answers on general topics, including TQM and CMM, Organizational
analysis, If the customer won't pay, Tailoring, Small projects, Common threads in the
CMM, Incremental development, Incremental process improvement, Legacy systems
and maintenance documentation, Software project dynamics, Not Applicable versus
risk, Discipline versus bureaucracy, COTS, Required overtime, Methodologies, and
Regular versus periodic.

Mark C. Paulk, "The Rational Planning of (Software) Projects," Proceedings of the
First World Congress for Software Quality, ASQC, San Francisco, CA, 20-22 June
1995, section 4.

The software crisis has persisted for decades. Our difficulties in planning and managing
software projects may be rooted in fundamental human nature, as suggested by
research in rational decision making, more than in the inherent difficulty of building
software. The Capability Maturity Model for Software, an application of the concepts of
Total Quality Management to software development and maintenance, embodies one
approach for improving the software process. The problems addressed by both the
CMM and TQM seem to lie in the basic ways that human beings think and organize
themselves. In many circumstances, normal human decision making can be

http://www.sei.cmu.edu/cmm/cmm.articles.html (2 of 8) [3/16/2004 4:40:44 PM]

Software CMM Articles and Papers

characterized as "irrational" because of systematic biases and fallacies in the way
people make decisions. Mechanisms such as those suggested by the CMM support
rational decision making.

Mark C. Paulk, "Mapping from SW-CMM v1.1 to SE-CMM v1.1." Working paper. 31
May 1996.

Mark C. Paulk, "Effective CMM-Based Process Improvement," Proceedings of the 6th
International Conference on Software Quality, Ottawa, Canada, 28-31 October
1996, pp. 226-237.

The Capability Maturity Model for Software developed by the Software Engineering
Institute has had a major influence on software process and quality improvement
around the world. Although the CMMSM has been widely adopted, there remain many
misunderstandings about how to use it effectively for business-driven software process
improvement. This paper discusses how to use the CMM correctly and effectively. It
also discusses aspects of successful process improvement efforts that are not explicitly
addressed by the CMM, but which are critical to achieving business and process
improvement goals.

Mark C. Paulk, " Software Process Proverbs," Crosstalk: The Journal of Defense
Software Engineering, Vol. 10, No. 1, January 1997, pp. 4-7.

The Software Engineering Institute (SEI) has developed several aids to help software
organizations define, manage, and improve their software processes: the IDEAL
(initiate, diagnose, establish, act, and leverage) model for process improvement,
appraisal methods that include assessments for internal process improvement and
evaluations to select and monitor contractors, and the Capability Maturity Model for
Software (CMM or SW-CMM). This article focuses on the CMM and states some
software process proverbs (principles, observations, axioms, assumptions) that underlie
the CMM and its use that may help people better understand the appropriate
application of the SEI's work.

Mark C. Paulk, "Mappings between ISO 12207, ISO 15504 (SPICE), Software CMM
v1.1, and Software CMM v2 Draft C." Working paper. 23 February 1998.

Mark C. Paulk, "Using the Software CMM in Small Organizations," The Joint 1998
Proceedings of the Pacific Northwest Software Quality Conference and the
Eighth International Conference on Software Quality, Portland, Oregon, 13-14
October 1998, pp. 350-361.

The Capability Maturity Model for Software developed by the Software Engineering

http://www.sei.cmu.edu/cmm/cmm.articles.html (3 of 8) [3/16/2004 4:40:44 PM]

http://www.stsc.hill.af.mil/crosstalk/1997/01/proverbs.asp

Software CMM Articles and Papers

Institute has had a major influence on software process and quality improvement
around the world. Although the CMM has been widely adopted, there remain many
misunderstandings about how to use it effectively for business-driven software process
improvement, particularly for small organizations and small projects. Some of the
common problems with interpreting the Software CMM for the small
project/organization include:

● What does "small" mean? In terms of people? Time? Size of project? Criticality
of product?

● What are the CMM "requirements"? Are there key process areas or goals that
should not be applied to small projects/organizations? Are there "invariants" of
good processes?

● What are the drivers and motivations that cause abuse of the CMM?

This paper discusses how to use the CMM correctly and effectively in any business
environment, with examples for the small organization. The conclusion is that the
issues associated with interpreting the Software CMM for the small project or
organization may be different in degree, but they are not different in kind, from those for
any organization interested in improving its software processes. Using the Software
CMM effectively and correctly requires professional judgment and an understanding of
how the CMM is structured to be used for different purposes.

Mark C. Paulk, "Practices of High Maturity Organizations," The 11th Software
Engineering Process Group (SEPG) Conference, Atlanta, Georgia, 8-11 March
1999.

Over the last few years the Software Engineering Institute has participated in several
workshops and site visits with maturity level 4 and 5 software organizations. This paper
summarizes the lessons learned from those interactions with high maturity
organizations, while preserving the anonymity of the organizations involved. Specific
areas of interest include statistical process and quality control and product
lines/families, but the observations cover a variety of engineering and management
practices, including issues outside the scope of the Capability Maturity Model for
Software. A survey was distributed to informally test the anecdotal observations about
high maturity practices.

Mark C. Paulk and David Putman, "Assessing a Level 5 Organization," Crosstalk: The
Journal of Defense Software Engineering, Vol. 12, No. 5, May 1999, pp. 21-27.

This article describes the assessment of the Ogden Air Logistics Center (ALC) Software
Engineering Division (TIS) that resulted in a Capability Maturity Model (CMM) Level 5
rating. It also discusses the issues in preparing for the assessment and reviewing the
processes of TIS from both an internal (Putman) and external (Paulk) assessor's
viewpoint: concerns going into the assessment and how they were resolved, alternate
implementations that were discussed by the assessment team and how the Software
CMM practices were judged to be satisfied, and controversial issues that sparked
discussion in the assessment team and how a consensus was reached on their
resolution. Specific issues include separating process and product assurance
responsibilities, stability of continually improving processes and the related data,
satisfactory evidence of institutionalization, and adequate implementation of
Quantitative Process Management. The article concludes with a description of the

http://www.sei.cmu.edu/cmm/cmm.articles.html (4 of 8) [3/16/2004 4:40:44 PM]

http://www.sei.cmu.edu/pub/cmm/high-maturity/survey98.pdf
http://www.stsc.hill.af.mil/crosstalk/1999/05/putman.asp

Software CMM Articles and Papers

challenges that TIS overcame and some of its strengths that may be of use to maturing
organizations.

Mark C. Paulk, "Using the Software CMM With Good Judgment," ASQ Software Quality
Professional, Vol. 1, No. 3, June 1999, pp. 19-29.

The Capability Maturity Model for Software (CMM) developed by the Software
Engineering Institute (SEI) has had a major influence on software process and quality
improvement around the world. Although the CMM has been widely adopted, there
remain many misunderstandings about how to use it effectively for business-driven
software process improvement, particularly for small organizations and small projects.
This paper discusses how to use the CMM correctly and effectively in any business
environment, with examples for small organizations, rapid prototyping projects,
maintenance shops, R&D outfits, and other environments. The conclusion is that the
issues associated with interpreting the Software CMM are essentially the same for any
organization interested in improving its software processes - the differences are of
degree rather than kind. Using the Software CMM effectively and correctly requires
professional judgment and an understanding of how the CMM is structured to be used
for different purposes.

Mark C. Paulk, " Toward Quantitative Process Management With Exploratory Data
Analysis," Proceedings of the Ninth International Conference on Software Quality,
Cambridge, MA, 4-6 Oct 1999, pp. 35-42.

The Capability Maturity Model for Software is a model for building organizational
capability that has been widely adopted in the software community and beyond. The
Software CMM is a five-level model that prescribes process improvement priorities for
software organizations. Level 4 in the CMM focuses on using quantitative techniques,
particularly statistical techniques, for controlling the software process. In statistical
process control terms, this means eliminating assignable (or special) causes of
variation. Organizations beginning to use quantitative management typically begin by
"informally stabilizing" their process. This paper describes typical questions and issues
associated with the exploratory data analysis involved in initiating quantitative process
management.

Mark C. Paulk, "Analyzing the Conceptual Relationship Between ISO/IEC 15504
(Software Process Assessment) and the Capability Maturity Model for Software,"
Proceedings of the Ninth International Conference on Software Quality,
Cambridge, MA, 4-6 Oct 1999, pp. 293-303.

The Capability Maturity Model for Software (Software CMM) is probably the best known
and most widely used model world-wide for software process improvement. ISO/IEC
15504 is a suite of standards currently under development for software process
assessment, which can be expected to affect the continuing evolution of the Software
CMM. This paper discusses the similarities and differences between the two models
and how they may influence each other as they both continue to evolve.

http://www.sei.cmu.edu/cmm/cmm.articles.html (5 of 8) [3/16/2004 4:40:44 PM]

http://www.sei.cmu.edu/pub/cmm/high-maturity/eda-qpm99.pdf
http://www.sei.cmu.edu/pub/cmm/high-maturity/eda-qpm99.pdf

Software CMM Articles and Papers

Mark C. Paulk, "Structured Approaches to Managing Change," Crosstalk: The Journal
of Defense Software Engineering, Vol. 12, No. 11, November 1999, pp. 4-7.

Change management is crucial in today's fast-moving world. Three perspectives may
be of value in thinking about change management: internally driven vs. externally driven
change; change directed at products and services vs. those directed at design and
production; and incremental vs. revolutionary change. A number of structured
approaches have been developed for thinking about the implications of change. This
paper summarizes three of those approaches: Geoffrey Moore's "crossing the chasm,"
Robert Fichman and Chris Kemerer's "assimilation gap," and Abdelkader Daghfous and
George White's "innovation analysis model."

Mark C. Paulk, Dennis Goldenson, and David M. White, " The 1999 Survey of High
Maturity Organizations," Software Engineering Institute, Carnegie Mellon University,
CMU/SEI-2000-SR-002, February 2000.

Over the last few years the Software Engineering Institute has investigated the high
maturity practices of Maturity Level 4 and 5 software organizations via assessments,
site visits, workshops, and surveys. This report summarizes the observations from the
1999 survey of high maturity organizations. Areas covered in the survey include
management, engineering, tools and technology, quantitative analysis, and people
issues. A specific area of interest is statistical process control, which is addressed in
some detail in this report, but the observations cover a variety of engineering and
management practices, including issues outside the scope of the Capability Maturity
Model for Software.

Mark C. Paulk and Mary Beth Chrissis, "The November 1999 High Maturity Workshop,"
Software Engineering Institute, Carnegie Mellon University, CMU/SEI-2000-SR-003,
March 2000.

A workshop for high maturity organizations was held on November 16-18, 1999, at the
Software Engineering Institute (SEI) in Pittsburgh. The purpose of this workshop was to
better understand practices that characterize Level 4 and 5 organizations. Topics of
discussion included both practices described in the CMM (Capability Maturity Model)
and other practices that have a significant impact in mature organizations. Two themes
were anticipated to be important to the workshop participants: statistical process control
for software and the reliability and credibility of Level 4 and 5 assessments. Additional
topics were solicited from the participants on CMM integration, measurement,
technology, human issues, and quality assurance. This report contains brief summaries
of the high maturity organizations participating in the workshop and the various working
group reports.

Mark C. Paulk, "Applying SPC to the Personal Software Process," Proceedings of the
Tenth International Conference on Software Quality, New Orleans, LA, 16-18
October 2000.

http://www.sei.cmu.edu/cmm/cmm.articles.html (6 of 8) [3/16/2004 4:40:44 PM]

http://www.stsc.hill.af.mil/crosstalk/1999/11/paulk.asp
http://www.sei.cmu.edu/publications/documents/00.reports/00sr002.html
http://www.sei.cmu.edu/publications/documents/00.reports/00sr002.html
http://www.sei.cmu.edu/publications/documents/00.reports/00sr003.html

Software CMM Articles and Papers

In recent years, a growing number of software organizations have begun to focus on
applying the concepts of statistical process control (SPC) to the software process,
usually as part of an improvement program based on the Software CMM. There are a
number of technical challenges to the successful use of these statistical techniques,
primarily centered on the issues associated with high variation between individual
software professionals. A growing number of organizations, however, are
demonstrating that SPC techniques can be applied to the software process, even if
questions remain on the specific processes, measures, and statistical techniques that
will provide significant business value. This paper illustrates the application of the XmR
control chart to the Personal Software Process.

Note that both the paper and the slides have useful information. The paper primarily
deals with the conceptual issues of SPC and PSP; the slides have the results of the
analysis that were presented at the conference.

Mark C. Paulk, " Extreme Programming from a CMM Perspective," IEEE Software, Vol.
18, No. 6, November/December 2001, pp. 19-26.

Extreme Programming (XP) has been advocated recently as an appropriate
programming method for the high-speed, volatile world of Internet and Web software
development. This popular methodology is reviewed from the Capability Maturity Model
(CMM) for Software, a five-level model that prescribes process improvement priorities
for software organizations. Overviews of both XP and CMM are provided, and XP is
critiqued from a Software CMM perspective. The conclusion is that agile methodologies
such as XP advocate many good engineering practices, although some practices may
be controversial and counter-productive outside a narrow domain. For those interested
in process improvement, the ideas in XP should be carefully considered for adoption
where appropriate in an organization's business environment since XP can be used to
address many of the CMM Level 2 and 3 practices. In turn, organizations using XP
should carefully consider the management and infrastructure issues described in the
CMM.

Mark Paulk, "List of Maturity Level 4 and 5 Organizations." Periodically revised.

This list of high maturity organizations provides organization names, maturity levels,
assessment dates, Lead Assessors, and points of contact. Please be aware of the
following issues regarding this list.

● The SEI does not certify companies at maturity levels.
● The SEI does not confirm the accuracy of the maturity levels reported by the

Lead Assessors or organizations.
● This list of Level 4 and 5 organizations is by no means exhaustive; we know of

other high maturity organizations that have chosen not to be listed.
● The SEI did not use information stored within its Process Appraisal Information

System to produce this document.
● The organizations listed gave explicit permission to publish this information.
● No information obtained in confidence was used to produce this list.

Updates to this list should be sent to Mark Paulk (mcp@sei.cmu.edu). Other

http://www.sei.cmu.edu/cmm/cmm.articles.html (7 of 8) [3/16/2004 4:40:44 PM]

mailto:mcp@sei.cmu.edu?Subject=HighMatOrgUpdate

Software CMM Articles and Papers

information on organizational maturity levels is available in the "Process Maturity
Profiles of the Software Community" and the "Compiled List of Published Maturity
Levels."

Mark C. Paulk, "A Software Process Bibliography." Periodically revised.

This bibliography was developed for people interested in learning more about software
process management. It is neither authoritative nor exhaustive and should not be
construed as an endorsement for any of the books and papers that may be referenced.
In some cases, papers listed present diametrically opposed perspectives and are
included to provide a balanced view of the issues.

Presentations related to the Software CMM are also available as PDF slide sets.

Other articles and working papers related to the Software CMM may be found in the
Software CMM v2 archives.

Papers published by the IEEE and the ASQ (formerly ASQC) are posted here with their
permission.

This material is presented to ensure timely dissemination of scholarly and technical
work. Copyright and all rights therein are retained by authors or by other copyright
holders. All persons copying this information are expected to adhere to the terms and
constraints invoked by each author's copyright. In most cases, these works may not be
reposted without the explicit permission of the copyright holder.

Return to top of the page

Return to main page

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2004 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/cmm/cmm.articles.html
Last Modified: 8 January 2004

http://www.sei.cmu.edu/cmm/cmm.articles.html (8 of 8) [3/16/2004 4:40:44 PM]

http://www.sei.cmu.edu/sema/profile.html
http://www.sei.cmu.edu/sema/profile.html
http://www.sei.cmu.edu/sema/pub_ml.html
http://www.sei.cmu.edu/sema/pub_ml.html
mailto:mcp@sei.cmu.edu?Subject=cmm.articles.html
http://www.sei.cmu.edu/about/disclaimer.html

Obtaining the Software CMM V1.1

Welcome

Capability
Maturity
Modeling

Team &
Personal
Software
Process

IDEAL Model

Risk
Management

Software
Engineering
Measurement &
Analysis (SEMA)

Software
Engineering
Information
Repository
(SEIR)

Software
Process
Improvement
Networks
(SPINs)

Appraiser
Program

Acronyms

SEI Initiatives

Conferences

Education &
Training

Obtaining the Software CMM® V1.1

Software CMM Model Documents

The SW-CMM consists of two SEI technical reports. You can download these reports
from the SEI Web site from the links provided below:

● Capability Maturity Model for Software, Version 1.1, Paulk, Mark C.; Curtis, Bill;
Chrissis, Mary Beth Chrisis, and Weber, Charles, Software Engineering
Institute, CMU/SEI-93-TR-24, DTIC Number ADA263403, February 1993.

● Key Practices of the Capability Maturity Model, Version 1.1, Paulk, Mark C.;
Weber, Charles V.; Garcia, Suzanne M. Garcia, Chrissis, Mary Beth; and Bush,
Marilyn W., Software Engineering Institute, CMU/SEI-93-TR-25, DTIC Number
ADA263432, February 1993.

The Software CMM Book

A hard bound copy of the Software CMM, The Capability Maturity Model: Guidelines for
Improving the Software Process, is published by the Addison Wesley publishing
company as part of the SEI Series on Software Engineering.

Copyright Issues and Commercial Use of Software CMM V1.1

Permission to reproduce the Software CMM V1.1 documents or to prepare derivative
works for internal use is granted in the front matter of these documents, provided the
copyright and "no warranty" statements are included with all reproductions and
derivative works.

Request for permission to reproduce these documents or to prepare derivative works
for external and commercial use should be addressed to the SEI Licensing Agent at:

Sarah Strauss
Phone: 412 / 268-3947
E-mail: permission@sei.cmu.edu

For further information regarding the Software CMM and its associated products,
contact:

http://www.sei.cmu.edu/cmm/obtain.cmm.html (1 of 2) [3/16/2004 4:40:46 PM]

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/cmm/obtain.cmm.html?owner=sshrum
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/sei-home.html
http://www.sei.cmu.edu/sei-home.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/tsp/
http://www.sei.cmu.edu/tsp/
http://www.sei.cmu.edu/ideal/ideal.html
http://www.sei.cmu.edu/ideal/ideal.html
http://www.sei.cmu.edu/programs/sepm/risk/index.html
http://www.sei.cmu.edu/programs/sepm/risk/index.html
http://www.sei.cmu.edu/sema/welcome.html
http://www.sei.cmu.edu/sema/welcome.html
http://seir.sei.cmu.edu/
http://seir.sei.cmu.edu/
http://www.sei.cmu.edu/collaborating/spins/spins.html
http://www.sei.cmu.edu/collaborating/spins/spins.html
http://www.sei.cmu.edu/managing/app.directory.html
http://www.sei.cmu.edu/managing/app.directory.html
http://www.sei.cmu.edu/about/acronyms/help.acronyms.html
http://www.sei.cmu.edu/about/acronyms/help.acronyms.html
http://www.sei.cmu.edu/about/overview/sei/initiatives.html
http://www.sei.cmu.edu/about/overview/sei/initiatives.html
http://www.sei.cmu.edu/products/events/events.html
http://www.sei.cmu.edu/products/events/events.html
http://www.sei.cmu.edu/products/courses/courses.html
http://www.sei.cmu.edu/products/courses/courses.html
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html
http://www.sei.cmu.edu/publications/documents/93.reports/93.tr.024.html
http://www.sei.cmu.edu/publications/documents/93.reports/93.tr.025.html
http://www.sei.cmu.edu/publications/books/process/cmm-improving-sw-process.html
http://www.sei.cmu.edu/publications/books/process/cmm-improving-sw-process.html
mailto:permission@sei.cmu.edu

Obtaining the Software CMM V1.1

SEI Customer Relations
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
Telephone: 412 / 268-5800
FAX: 412-268-5758
E-mail: customer-relations@sei.cmu.edu

top of the page | CMM main page

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2004 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/cmm/obtain.cmm.html
Last Modified: 12 January 2004

http://www.sei.cmu.edu/cmm/obtain.cmm.html (2 of 2) [3/16/2004 4:40:46 PM]

mailto:customer-relations@sei.cmu.edu
http://www.sei.cmu.edu/about/disclaimer.html

The Capability Maturity Model for
Software

Mark C. Paulk
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA 15213-3890

Bill Curtis
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA 15213-3890

Mary Beth Chrissis
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA 15213-3890

Charles V. Weber
IBM Federal Systems Company

6300 Diagonal Highway
Boulder, CO 80301

Abstract
This paper provides an overview of the latest version of the Capability Maturity Model
for Software, CMM v1.1. Based on over six years of experience with software process
improvement and the contributions of hundreds of reviewers, CMM v1.1 describes the
software engineering and management practices that characterize organizations as
they mature their processes for developing and maintaining software. This paper
stresses the need for a process maturity framework to prioritize improvement actions,
describes the process maturity framework of five maturity levels and the associated
structural components, and discusses future directions for the CMM.

Keywords: capability maturity model, CMM, process maturity framework, software
process improvement, process capability, process performance, maturity level, key
process area, software process assessment, software capability evaluation.

1

1 Introduction
After two decades of unfulfilled promises about productivity and quality gains
from applying new software methodologies and technologies, organizations
are realizing that their fundamental problem is the inability to manage the
software process. In many organizations, projects are often excessively late
and over budget, and the benefits of better methods and tools cannot be
realized in the maelstrom of an undisciplined, chaotic project.

In November 1986, the Software Engineering Institute (SEI), with assistance
from the Mitre Corporation, began developing a process maturity framework
that would help organizations improve their software process. In September
1987, the SEI released a brief description of the process maturity framework
[Humphrey 87a] which was later expanded in Humphrey's book, Managing
the Software Process [Humphrey89]. Two methods, software process
assessment1 and software capability evaluation2 and a maturity
questionnaire [Humphrey87b] were developed to appraise software process
maturity.

After four years of experience with the software process maturity framework
and the preliminary version of the maturity questionnaire, the SEI evolved the
maturity framework into the Capability Maturity Model for Software (CMM)
[Paulk91, Weber91]. The CMM presents sets of recommended practices in a
number of key process areas that have been shown to enhance software
process capability. The CMM is based on knowledge acquired from software
process assessments and extensive feedback from both industry and
government.

The Capability Maturity Model for Software provides software organizations
with guidance on how to gain control of their processes for developing and
maintaining software and how to evolve toward a culture of software
engineering and management excellence. The CMM was designed to guide
software organizations in selecting process improvement strategies by
determining current process maturity and identifying the few issues most

1 A software process assessment is an appraisal by a trained team of software professionals to determine
the state of an organization's current software process, to determine the high-priority software process-
related issues facing an organization, and to obtain the organizational support for software process
improvement.
2 A software capability evaluation is an appraisal by a trained team of professionals to identify contractors
who are qualified to perform the software work or to monitor the state of the software process used on an
existing software effort.

2

critical to software quality and process improvement. By focusing on a limited
set of activities and working aggressively to achieve them, an organization
can steadily improve its organization-wide software process to enable
continuous and lasting gains in software process capability.

The initial release of the CMM, v1.0, was reviewed and used by the software
community during 1991 and 1992. A workshop was held in April, 1992 on
CMM v1.0, and was attended by about 200 software professionals. The
current version of the CMM, v1.1 [Paulk93a, Paulk93b], is the result of the
feedback from that workshop and ongoing feedback from the software
community.

1.1 Immature Versus Mature Software
Organizations
Setting sensible goals for process improvement requires an understanding of
the difference between immature and mature software organizations. In an
immature software organization, software processes are generally improvised
by practitioners and their management during the course of the project. Even
if a software process has been specified, it is not rigorously followed or
enforced. The immature software organization is reactionary, and managers
are usually focused on solving immediate crises (better known as fire fighting).
Schedules and budgets are routinely exceeded because they are not based
on realistic estimates. When hard deadlines are imposed, product
functionality and quality are often compromised to meet the schedule.

In an immature organization, there is no objective basis for judging product
quality or for solving product or process problems. Therefore, product quality
is difficult to predict. Activities intended to enhance quality such as reviews
and testing are often curtailed or eliminated when projects fall behind
schedule.

On the other hand, a mature software organization possesses an
organization-wide ability for managing software development and
maintenance processes. The software process is accurately communicated to
both existing staff and new employees, and work activities are carried out
according to the planned process. The processes mandated are usable and
consistent with the way the work actually gets done. These defined processes
are updated when necessary, and improvements are developed through
controlled pilot-tests and/or cost benefit analyses. Roles and responsibilities
within the defined process are clear throughout the project and across the
organization.

3

In a mature organization, managers monitor the quality of the software
products and the process that produced them. There is an objective,
quantitative basis for judging product quality and analyzing problems with the
product and process. Schedules and budgets are based on historical
performance and are realistic; the expected results for cost, schedule,
functionality, and quality of the product are usually achieved. In general, a
disciplined process is consistently followed because all of the participants
understand the value of doing so, and the necessary infrastructure exists to
support the process.

1.2 Fundamental Concepts Underlying Process
Maturity
A software process can be defined as a set of activities, methods, practices,
and transformations that people use to develop and maintain software and the
associated products (e.g., project plans, design documents, code, test cases,
and user manuals). As an organization matures, the software process
becomes better defined and more consistently implemented throughout the
organization.

Software process capability describes the range of expected results that
can be achieved by following a software process. The software process
capability of an organization provides one means of predicting the most likely
outcomes to be expected from the next software project the organization
undertakes.

Software process performance represents the actual results achieved by
following a software process. Thus, software process performance focuses on
the results achieved, while software process capability focuses on results
expected.

Software process maturity is the extent to which a specific process is
explicitly defined, managed, measured, controlled, and effective. Maturity
implies a potential for growth in capability and indicates both the richness of
an organization's software process and the consistency with which it is
applied in projects throughout the organization.

As a software organization gains in software process maturity, it
institutionalizes its software process via policies, standards, and
organizational structures. Institutionalization entails building an infrastructure
and a corporate culture that supports the methods, practices, and procedures

4

of the business so that they endure after those who originally defined them
have gone.

2 The Five Levels of Software Process Maturity
Continuous process improvement is based on many small, evolutionary steps
rather than revolutionary innovations. The staged structure of the CMM is
based on principles of product quality espoused by Walter Shewart, W.
Edwards Deming, Joseph Juran, and Philip Crosby. The CMM provides a
framework for organizing these evolutionary steps into five maturity levels that
lay successive foundations for continuous process improvement. These five
maturity levels define an ordinal scale for measuring the maturity of an
organization's software process and for evaluating its software process
capability. The levels also help an organization prioritize its improvement
efforts.

A maturity level is a well-defined evolutionary plateau toward achieving a
mature software process. Each maturity level comprises a set of process
goals that, when satisfied, stabilize an important component of the software
process. Achieving each level of the maturity framework establishes a
different component in the software process, resulting in an increase in the
process capability of the organization.

Organizing the CMM into the five levels shown in Figure 2.1 prioritizes
improvement actions for increasing software process maturity. The labeled
arrows in Figure 2.1 indicate the type of process capability being
institutionalized by the organization at each step of the maturity framework.

5

Initial
(1)

Repeatable
(2)

Defined
(3)

Managed
(4)

Optimizing
(5)

Disciplined
process

Standard,
consistent
process

Predictable
process

Continuously
improving
process

Figure 2.1 The Five Levels of Software Process Maturity

2.1 Behavioral Characterization of the Maturity
Levels
Maturity Levels 2 through 5 can be characterized through the activities
performed by the organization to establish or improve the software process, by
activities performed on each project, and by the resulting process capability
across projects. A behavioral characterization of Level 1 is included to

6

establish a base of comparison for process improvements at higher maturity
levels.

2.1.1 Level 1 - The Initial Level

At the Initial Level, the organization typically does not provide a stable
environment for developing and maintaining software. Such organizations
frequently have difficulty making commitments that the staff can meet with an
orderly engineering process, resulting in a series of crises. During a crisis,
projects typically abandon planned procedures and revert to coding and
testing. Success depends entirely on having an exceptional manager and a
seasoned and effective software team. Occasionally, capable and forceful
software managers can withstand the pressures to take shortcuts in the
software process; but when they leave the project, their stabilizing influence
leaves with them. Even a strong engineering process cannot overcome the
instability created by the absence of sound management practices.

In spite of this ad hoc, even chaotic, process, Level 1 organizations frequently
develop products that work, even though they may be over the budget and
schedule. Success in Level 1 organizations depends on the competence and
heroics of the people in the organization3 and cannot be repeated unless the
same competent individuals are assigned to the next project. Thus, at Level 1,
capability is a characteristic of the individuals, not of the organization.

2.1.2 Level 2 - The Repeatable Level

At the Repeatable Level, policies for managing a software project and
procedures to implement those policies are established. Planning and
managing new projects is based on experience with similar projects. Process
capability is enhanced by establishing basic process management discipline
on a project by project basis. An effective process can be characterized as
one which is practiced, documented, enforced, trained, measured, and able to
improve.

Projects in Level 2 organizations have installed basic software management
controls. Realistic project commitments are based on the results observed on
previous projects and on the requirements of the current project. The software
managers for a project track software costs, schedules, and functionality;
problems in meeting commitments are identified when they arise. Software
requirements and the work products developed to satisfy them are baselined,

3 Selecting, hiring, developing, and/or retaining competent people are significant issues for organizations
at all levels of maturity, but they are largely outside the scope of the CMM.

7

and their integrity is controlled. Software project standards are defined, and
the organization ensures they are faithfully followed. The software project
works with its subcontractors, if any, to establish a customer-supplier
relationship.

Processes may differ between projects in a Level 2 organization. The
organizational requirement for achieving Level 2 is that there are policies that
guide the projects in establishing the appropriate management processes.

The software process capability of Level 2 organizations can be summarized
as disciplined because planning and tracking of the software project is stable
and earlier successes can be repeated. The project's process is under the
effective control of a project management system, following realistic plans
based on the performance of previous projects.

2.1.3 Level 3 - The Defined Level

At the Defined Level, the standard process for developing and maintaining
software across the organization is documented, including both software
engineering and management processes, and these processes are integrated
into a coherent whole. This standard process is referred to throughout the
CMM as the organization's standard software process. Processes established
at Level 3 are used (and changed, as appropriate) to help the software
managers and technical staff perform more effectively. The organization
exploits effective software engineering practices when standardizing its
software processes. There is a group that is responsible for the organization's
software process activities, e.g., a software engineering process group, or
SEPG [Fowler90]. An organization-wide training program is implemented to
ensure that the staff and managers have the knowledge and skills required to
fulfill their assigned roles.

Projects tailor the organization's standard software process to develop their
own defined software process, which accounts for the unique characteristics
of the project. This tailored process is referred to in the CMM as the project's
defined software process. A defined software process contains a coherent,
integrated set of well-defined software engineering and management
processes. A well-defined process can be characterized as including
readiness criteria, inputs, standards and procedures for performing the work,
verification mechanisms (such as peer reviews), outputs, and completion
criteria. Because the software process is well defined, management has good
insight into technical progress on all projects.

8

The software process capability of Level 3 organizations can be summarized
as standard and consistent because both software engineering and
management activities are stable and repeatable. Within established product
lines, cost, schedule, and functionality are under control, and software quality
is tracked. This process capability is based on a common, organization-wide
understanding of the activities, roles, and responsibilities in a defined software
process.

2.1.4 Level 4 - The Managed Level

At the Managed Level, the organization sets quantitative quality goals for both
software products and processes. Productivity and quality are measured for
important software process activities across all projects as part of an
organizational measurement program. An organization-wide software
process database is used to collect and analyze the data available from the
projects' defined software processes. Software processes are instrumented
with well-defined and consistent measurements at Level 4. These
measurements establish the quantitative foundation for evaluating the
projects' software processes and products.

Projects achieve control over their products and processes by narrowing the
variation in their process performance to fall within acceptable quantitative
boundaries. Meaningful variations in process performance can be
distinguished from random variation (noise), particularly within established
product lines. The risks involved in moving up the learning curve of a new
application domain are known and carefully managed.

The software process capability of Level 4 organizations can be summarized
as being quantifiable and predictable because the process is measured and
operates within measurable limits. This level of process capability allows an
organization to predict trends in process and product quality within the
quantitative bounds of these limits. Because the process is both stable and
measured, when some exceptional circumstance occurs, the "special cause"
of the variation can be identified and addressed. When the known limits of the
process are exceeded, action is taken to correct the situation. Software
products are of predictably high quality.

2.1.5 Level 5 - The Optimizing Level

At the Optimizing Level, the entire organization is focused on continuous
process improvement. The organization has the means to identify
weaknesses and strengthen the process proactively, with the goal of
preventing the occurrence of defects. Data on the effectiveness of the

9

software process is used to perform cost benefit analyses of new technologies
and proposed changes to the organization's software process. Innovations
that exploit the best software engineering practices are identified and
transferred throughout the organization.

Software project teams in Level 5 organizations analyze defects to determine
their causes. Software processes are evaluated to prevent known types of
defects from recurring, and lessons learned are disseminated to other
projects.

There is chronic waste, in the form of rework, in any system simply due to
random variation. Waste is unacceptable; organized efforts to remove waste
result in changing the system, i.e., improving the process by changing
"common causes" of inefficiency to prevent the waste from occurring. While
this is true of all the maturity levels, it is the focus of Level 5.

The software process capability of Level 5 organizations can be characterized
as continuously improving because Level 5 organizations are continuously
striving to improve the range of their process capability, thereby improving the
process performance of their projects. Improvement occurs both by
incremental advancements in the existing process and by innovations using
new technologies and methods. Technology and process improvements are
planned and managed as ordinary business activities.

2.2 Process Capability and the Prediction of
Performance
The maturity of an organization's software process helps to predict a project's
ability to meet its goals. Projects in Level 1 organizations experience wide
variations in achieving cost, schedule, functionality, and quality targets. As
illustrated in Figure 2.4, three improvements in meeting targeted goals are
expected as the organization's software process matures. These expectations
are based on the quantitative results process improvement has achieved in
other industries, and they are consistent with the initial case study results
reported from software organizations [Dion92, Humphrey91b, Lipke92,
Wohlwend93].

First, as maturity increases, the difference between targeted results and actual
results decreases across projects. For instance, Level 1 organizations often
miss their originally scheduled delivery dates by a wide margin, whereas
higher maturity level organizations should be able to meet targeted dates with

10

increased accuracy. (This is illustrated in Figure 2.4 by how much of the area
under the curve lies to the right of the target line.)

Second, as maturity increases, the variability of actual results around targeted
results decreases. For instance, in Level 1 organizations delivery dates for
projects of similar size are unpredictable and vary widely. Similar projects in
a higher maturity level organization, however, will be delivered within a
smaller range. (This is illustrated in Figure 2.4 by how much of the area under
the curve is concentrated near the target line.)

Third, targeted results improve as the maturity of the organization increases.
That is, as a software organization matures, costs decrease, development time
becomes shorter, and productivity and quality increase. In a Level 1
organization, development time can be quite long because of the amount of
rework that must be performed to correct mistakes. In contrast, higher maturity
level organizations have increased process efficiency and reduce costly
rework, allowing development time to be shortened. (This is illustrated in
Figure 2.4 by the horizontal displacement of the target line from the origin.)

The improvements in predicting a project's results represented in Figure 2.4
assume that the software project's outcomes become more predictable as
noise, often in the form of rework, is removed from the software process.
Unprecedented systems complicate the picture since new technologies and
applications lower the process capability by increasing variability. Even in the
case of unprecedented systems, the management and engineering practices
characteristic of more mature organizations help identify and address
problems earlier in the development cycle than they would have been
detected in less mature organizations. In some cases a mature process
means that "failed" projects are identified early in the software life cycle and
investment in a lost cause is minimized.

The documented case studies of software process improvement indicate that
there are significant improvements in both quality and productivity as a result
of the improvement effort [Dion92, Humphrey91b, Lipke92, Wohlwend93].
The return on investment seems to typically be in the 5:1 to 8:1 range for
successful process improvement efforts.

11

P
ro

b
ab

ili
ty

Time/$/...

T
ar

g
et

 N

11

22

P
ro

b
ab

ili
ty

Time/$/...

T
ar

g
et

 N
+a

44

P
ro

b
ab

ili
ty

Time/$/...

T
ar

g
et

 N
-y

55
P

ro
b

ab
ili

ty

Time/$/...
T

ar
g

et
 N

-z

33

P
ro

b
ab

ili
ty

Time/$/...

T
ar

g
et

 N
-x

Schedule and cost targets
are typically overrun by
Level 1 organizations.

Plans based on past
performance are more
realistic in Level 2
organizations

With well-defined processes,
performance improves in
Level 3 organizations

Based on quantitative
understanding of process
and product, performance
continues to improve in
Level 4 organizations

Performance continuously
improves in Level 5
organizations

Figure 2.4 Process Capability as Indicated by Maturity Level

12

2.3 Skipping Maturity Levels
Trying to skip levels is counterproductive because each maturity level in the
CMM forms a necessary foundation from which to achieve the next level. The
CMM identifies the levels through which an organization should evolve to
establish a culture of software engineering excellence. Organizations can
institute specific process improvements at any time they choose, even before
they are prepared to advance to the level at which the specific practice is
recommended. However, organizations should understand that the stability of
these improvements is at greater risk since the foundation for their successful
institutionalization has not been completed. Processes without the proper
foundation fail at the very point they are needed most – under stress – and
they provide no basis for future improvement.

For instance, a well-defined software process that is characteristic of a Level 3
organization, can be placed at great risk if management makes a poorly
planned schedule commitment or fails to control changes to the baselined
requirements. Similarly, many organizations have collected the detailed data
characteristic of Level 4, only to find that the data were uninterpretable
because of inconsistency in the software development processes.

At the same time, it must be recognized that process improvement efforts
should focus on the needs of the organization in the context of its business
environment, and higher-level practices may address the current needs of an
organization or project. For example, when prescribing what steps an
organization should take to move from Level 1 to Level 2, frequently one of the
recommendations is to establish a software engineering process group
(SEPG), which is an attribute of Level 3 organizations. While an SEPG is not
a necessary characteristic of a Level 2 organization, they can be a useful part
of the prescription for achieving Level 2.

3 Operational Definition of the Capability Maturity
Model

The CMM is a framework representing a path of improvements recommended
for software organizations that want to increase their software process
capability. This operational elaboration of the CMM is designed to support the
many ways it will be used. There are at least four uses of the CMM that are
supported:

13

° Assessment teams will use the CMM to identify strengths and
weaknesses in the organization.

° Evaluation teams will use the CMM to identify the risks of selecting
among different contractors for awarding business and to monitor
contracts.

° Upper management will use the CMM to understand the activities
necessary to launch a software process improvement program in their
organization.

° Technical staff and process improvement groups, such as an SEPG,
will use the CMM as a guide to help them define and improve the
software process in their organization.

Because of the diverse uses of the CMM, it must be decomposed in sufficient
detail that actual process recommendations can be derived from the structure
of the maturity levels. This decomposition also indicates the key processes
and their structure that characterize software process maturity and software
process capability.

3.1 Internal Structure of the Maturity Levels
Each maturity level has been decomposed into constituent parts. With the
exception of Level 1, the decomposition of each maturity level ranges from
abstract summaries of each level down to their operational definition in the
key practices, as shown in Figure 3.1. Each maturity level is composed of
several key process areas. Each key process area is organized into five
sections called common features. The common features specify the key
practices that, when collectively addressed, accomplish the goals of the key
process area.

3.2 Maturity Levels
A maturity level is a well-defined evolutionary plateau toward achieving a
mature software process. Each maturity level indicates a level of process
capability, as was illustrated in Figure 2.1. For instance, at Level 2 the
process capability of an organization has been elevated from ad hoc to
disciplined by establishing sound project management controls.

14

Maturity Levels

Key
Practices

contain

contain

Key Process Areas

Implementation or
Institutionalization

Goals

Process
Capability

describe

achieve

indicate

organized by

Common
Features

address

Infrastructure or
Activities

Figure 3.1 The CMM Structure

15

3.3 Key Process Areas
Except for Level 1, each maturity level is decomposed into several key
process areas that indicate where an organization should focus on to improve
its software process. Key process areas identify the issues that must be
addressed to achieve a maturity level.

Each key process area identifies a cluster of related activities that, when
performed collectively, achieve a set of goals considered important for
enhancing process capability. The key process areas have been defined to
reside at a single maturity level as shown in Figure 3.2. The path to achieving
the goals of a key process area may differ across projects based on
differences in application domains or environments. Nevertheless, all the
goals of a key process area must be achieved for the organization to satisfy
that key process area.

The adjective "key" implies that there are process areas (and processes) that
are not key to achieving a maturity level. The CMM does not describe all the
process areas in detail that are involved with developing and maintaining
software. Certain process areas have been identified as key determiners of
process capability; these are the ones described in the CMM.

The key process areas may be considered the requirements for achieving a
maturity level. To achieve a maturity level, the key process areas for that level
must be satisfied.

16

 Quality management
Process measurement and analysis

Initial (1)

Repeatable (2)
 Software configuration management
 Software quality assurance
 Software subcontract management
 Software project tracking and oversight
 Software project planning
Requirements management

Defined (3)

 Peer reviews
 Intergroup coordination
 Software product engineering
 Integrated software management
 Training program
 Organization process definition
Organization process focus

Managed (4)

 Process change management
 Technology change management
Defect prevention

Optimizing (5)

 Software quality management
 Quantitative process management

Figure 3.2 The Key Process Areas by Maturity Level

17

The specific practices to be executed in each key process area will evolve as
the organization achieves higher levels of process maturity. For instance,
many of the project estimating capabilities described in the Software Project
Planning key process area at Level 2 must evolve to handle the additional
project data available at Level 3, as is described in Integrated Software
Management.

The key process areas at Level 2 focus on the software project's concerns
related to establishing basic project management controls.

° The purpose of Requirements Management is to establish a common
understanding between the customer and the software project of the
customer's requirements that will be addressed by the software project.
This agreement with the customer is the basis for planning and
managing the software project.

° The purpose of Software Project Planning is to establish reasonable
plans for performing the software engineering and for managing the
software project. These plans are the necessary foundation for
managing the software project.

° The purpose of Software Project Tracking and Oversight is to establish
adequate visibility into actual progress so that management can take
effective actions when the software project's performance deviates
significantly from the software plans.

° The purpose of Software Subcontract Management is to select qualified
software subcontractors and manage them effectively.

° The purpose of Software Quality Assurance is to provide management
with appropriate visibility into the process being used by the software
project and of the products being built.

° The purpose of Software Configuration Management is to establish and
maintain the integrity of the products of the software project throughout
the project's software life cycle.

The key process areas at Level 3 address both project and organizational
issues, as the organization establishes an infrastructure that institutionalizes
effective software engineering and management processes across all
projects.

18

° The purpose of Organization Process Focus is to establish the
organizational responsibility for software process activities that improve
the organization's overall software process capability.

° The purpose of Organization Process Definition is to develop and
maintain a usable set of software process assets that improve process
performance across the projects and provide a basis for defining
meaningful data for quantitative process management. These assets
provide a stable foundation that can be institutionalized via mechanisms
such as training.

° The purpose of Training Program is to develop the skills and knowledge
of individuals so they can perform their roles effectively and efficiently.
Training is an organizational responsibility, but the software projects
should identify their needed skills and provide the necessary training
when the project's needs are unique.

° The purpose of Integrated Software Management is to integrate the
software engineering and management activities into a coherent, defined
software process that is tailored from the organization's standard
software process and related process assets. This tailoring is based on
the business environment and technical needs of the project.

° The purpose of Software Product Engineering is to consistently perform a
well-defined engineering process that integrates all the software
engineering activities to produce correct, consistent software products
effectively and efficiently. Software Product Engineering describes the
technical activities of the project, e.g., requirements analysis, design,
code, and test.

° The purpose of Intergroup Coordination is to establish a means for the
software engineering group to participate actively with the other
engineering groups so the project is better able to satisfy the customer's
needs effectively and efficiently.

° The purpose of Peer Reviews is to remove defects from the software work
products early and efficiently. An important corollary effect is to develop
a better understanding of the software work products and of the defects
that can be prevented. The peer review is an important and effective
engineering method that can be implemented via inspections, structured
walkthroughs, or a number of other collegial review methods.

19

The key process areas at Level 4 focus on establishing a quantitative
understanding of both the software process and the software work products
being built.

° The purpose of Quantitative Process Management is to control the
process performance of the software project quantitatively. Software
process performance represents the actual results achieved from
following a software process. The focus is on identifying special causes
of variation within a measurably stable process and correcting, as
appropriate, the circumstances that drove the transient variation to occur.

° The purpose of Software Quality Management is to develop a
quantitative understanding of the quality of the project's software
products and achieve specific quality goals.

The key process areas at Level 5 cover the issues that both the organization
and the projects must address to implement continuous and measurable
software process improvement.

° The purpose of Defect Prevention is to identify the causes of defects and
prevent them from recurring. The software project analyzes defects,
identifies their causes, and changes its defined software process.

° The purpose of Technology Change Management is to identify beneficial
new technologies (i.e., tools, methods, and processes) and transfer them
into the organization in an orderly manner. The focus of Technology
Change Management is on performing innovation efficiently in an ever-
changing world.

° The purpose of Process Change Management is to continually improve
the software processes used in the organization with the intent of
improving software quality, increasing productivity, and decreasing the
cycle time for product development.

3.4 Goals
The goals summarize the key practices of a key process area and can be
used to determine whether an organization or project has effectively
implemented the key process area. The goals signify the scope, boundaries,
and intent of each key process area. Satisfaction of a KPA is determined by
achievement of the goals.

20

3.5 Common Features
For convenience, the practices that describe the key process areas are
organized by common features. The common features are attributes that
indicate whether the implementation and institutionalization of a key process
area is effective, repeatable, and lasting. The five common features are:

Commitment to
Perform

Commitment to Perform describes the actions the
organization must take to ensure that the process is
established and will endure. Commitment to Perform
typically involves establishing organizational policies and
senior management sponsorship.

Ability to Perform Ability to Perform describes the preconditions that must
exist in the project or organization to implement the
software process competently. Ability to Perform typically
involves resources, organizational structures, and training.

Activities
Performed

Activities Performed describes the roles and procedures
necessary to implement a key process area. Activities
Performed typically involve establishing plans and
procedures, performing the work, tracking it, and taking
corrective actions as necessary.

Measurement and
Analysis

Measurement and Analysis describes the need to measure
the process and analyze the measurements. Measurement
and Analysis typically includes examples of the
measurements that could be taken to determine the status
and effectiveness of the Activities Performed.

Verifying
Implementation

Verifying Implementation describes the steps to ensure that
the activities are performed in compliance with the process
that has been established. Verification typically
encompasses reviews and audits by management and
software quality assurance.

The practices in the common feature Activities Performed describe what must
be implemented to establish a process capability. The other practices, taken
as a whole, form the basis by which an organization can institutionalize the
practices described in the Activities Performed common feature.

21

3.6 Key Practices
Each key process area is described in terms of the key practices that
contribute to satisfying its goals. The key practices describe the
infrastructure and activities that contribute most to the effective implementation
and institutionalization of the key process area.

Each key practice consists of a single sentence, often followed by a more
detailed description, which may include examples and elaboration. These
key practices, also referred to as the top-level key practices, state the
fundamental policies, procedures, and activities for the key process area. The
components of the detailed description are frequently referred to as sub
practices. The key practices describe "what" is to be done, but they should not
be interpreted as mandating "how" the goals should be achieved. Alternative
practices may accomplish the goals of the key process area. The key
practices should be interpreted rationally to judge whether the goals of the key
process area are effectively, although perhaps differently, achieved. The key
practices are contained in the "Key Practices of the Capability Maturity Model,
Version 1.1" [Paulk93b], along with guidance on their interpretation.

4 Future Directions of the CMM
Achieving higher levels of software process maturity is incremental and
requires a long-term commitment to continuous process improvement.
Software organizations may take ten years or more to build the foundation for,
and a culture oriented toward, continuous process improvement. Although a
decade-long process improvement program is foreign to most U.S.
companies, this level of effort is required to produce mature software
organizations.

The CMM is not a silver bullet and does not address all of the issues that are
important for successful projects. For example, the CMM does not currently
address expertise in particular application domains, advocate specific
software technologies, or suggest how to select, hire, motivate, and retain
competent people. Although these issues are crucial to a project's success,
they have not been integrated into the CMM.

During the next few years, the CMM will continue to undergo extensive testing
through use in software process assessments, software capability evaluations,
and process improvement programs. CMM-based products and training
materials will be developed and revised as appropriate. The CMM is a living
document that will be improved, but it is anticipated that CMM v1.1 will remain

22

the baseline until at least 1996. This provides an appropriate and realistic
balance between the needs for stability and for continued improvement. A
book on the CMM is in progress for the SEI series published by Addison-
Wesley.

The SEI is also working with the International Standards Organization (ISO) in
its efforts to build international standards for software process assessment,
improvement, and capability evaluation. This effort will integrate concepts
from many different process improvement methods. The development of the
ISO standards (and the contributions of other methods) will influence CMM
v2.0, even as the SEI's process work will influence the activities of the ISO.

5 Conclusion
The CMM represents a "common sense engineering" approach to software
process improvement. The maturity levels, key process areas, common
features, and key practices have been extensively discussed and reviewed
within the software community. While the CMM is not perfect, it does
represent a broad consensus of the software community and is a useful tool
for guiding software process improvement efforts.

The CMM provides a conceptual structure for improving the management and
development of software products in a disciplined and consistent way. It does
not guarantee that software products will be successfully built or that all
problems in software engineering will be adequately resolved. However,
current reports from CMM-based improvement programs indicate that it can
improve the likelihood with which a software organization can achieve its cost,
quality, and productivity goals.[Dion92, Humphrey91b, Lipke92, Wohlwend93]

The CMM identifies practices for a mature software process and provides
examples of the state-of-the-practice (and in some cases, the state-of-the-art),
but it is not meant to be either exhaustive or dictatorial. The CMM identifies
the characteristics of an effective software process, but the mature
organization addresses all issues essential to a successful project, including
people and technology, as well as process.

23

6 References
Dion92 Raymond Dion, "Elements of a Process-Improvement

Program," IEEE Software, Vol. 9, No. 4, July 1992, pp. 83-
85.

Fowler90 P. Fowler and S. Rifkin, Software Engineering Process
Group Guide, Software Engineering Institute, CMU/SEI-90-
TR-24, ADA235784, September, 1990.

Humphrey87a W.S. Humphrey, Characterizing the Software Process: A
Maturity Framework, Software Engineering Institute,
CMU/SEI-87-TR-11, ADA182895, June 1987. Also
published in IEEE Software, Vol. 5, No. 2, March 1988,
pp.73-79.

Humphrey87b W.S. Humphrey and W.L. Sweet, A Method for Assessing
the Software Engineering Capability of Contractors,
Software Engineering Institute, CMU/SEI-87-TR-23,
ADA187320, September 1987.

Humphrey89 W.S. Humphrey, Managing the Software Process, Addison-
Wesley, Reading, MA, 1989.

Humphrey91a W.S. Humphrey, D.H. Kitson, and J. Gale, "A Comparison of
U.S. and Japanese Software Process Maturity,"
Proceedings of the 13th International Conference on
Software Engineering, Austin, TX, 13-17 May 1991, pp. 38-
49.

Humphrey91b Watts S. Humphrey, T.R. Snyder, and Ronald R. Willis,
"Software Process Improvement at Hughes Aircraft," IEEE
Software, Vol. 8, No. 4, July 1991, pp. 11-23.

Kitson92 D.H. Kitson and S. Masters, An Analysis of SEI Software
Process Assessment Results: 1987-1991, Software
Engineering Institute, CMU/SEI-92-TR-24, July 1992.

Lipke92 W.H. Lipke and K.L. Butler, "Software Process
Improvement: A Success Story," Crosstalk: The Journal of
Defense Software Engineering, No. 38, November 1992,
pp. 29-31.

24

Paulk91 M.C. Paulk, B. Curtis, M.B. Chrissis, et al, Capability Maturity
Model for Software, Software Engineering Institute,
CMU/SEI-91-TR-24, ADA240603, August 1991.

Paulk93a M.C. Paulk, B. Curtis, M.B. Chrissis, and C.V. Weber,
Capability Maturity Model for Software, Version 1.1,
Software Engineering Institute, CMU/SEI-93-TR-24,
February 1993.

Paulk93b M.C. Paulk, C.V. Weber, S. Garcia, M.B. Chrissis, and M.
Bush, Key Practices of the Capability Maturity Model,
Version 1.1, Software Engineering Institute, CMU/SEI-93-
TR-25, February 1993.

Weber91 C.V. Weber, M.C. Paulk, C.J. Wise, and J.V. Withey, Key
Practices of the Capability Maturity Model, Software
Engineering Institute, CMU/SEI-91-TR-25, ADA240604,
August 1991.

Wohlwend93 H. Wohlwend and S. Rosenbaum, "Software Improvements
in an International Company," Proceedings of the 15th
International Conference of Software Engineering,
Washington D.C, May 1993.

The Capability Maturity Model for Software was produced by a dedicated
group of people who spent many hours discussing the model and its features
and then trying to document it in the two versions of the CMM. Contributors to
the CMM, other than the authors, include Edward Averill, Judy Bamberger,
Joe Besselman, Marilyn Bush, Anita Carleton, Marty Carlson, Susan Dart,
Betty Deimel, Lionel Deimel, Peter Feiler, Julia Gale, Suzie Garcia, Jim Hart,
Ron Higuera, Watts Humphrey, Purvis Jackson, Tim Kasse, Richard Kauffold,
David Kitson, Mike Konrad, Peter Malpass, Mark Manduke, Steve Masters,
Mary Merrill, Judah Mogilensky, Warren Moseley, Jim Over, George
Pandelios, Bob Park, Jeff Perdue, Dick Phillips, Mike Rissman, Jim Rozum,
Jane Siegel, Christer von Schantz, Cynthia Wise, and Jim Withey.

We appreciate the administrative help from Todd Bowman, Dorothy
Josephson, Debbie Punjack, Carolyn Tady, Marcia Theoret, Andy Tsounos,
and David White; and the editorial assistance from Suzanne Couturiaux and
Bill Pollak.

25

Special thanks go to the members of the CMM Correspondence Group, who
contributed their time and effort to reviewing drafts of the CMM and providing
insightful comments and recommendations, and to the members of the CMM
Advisory Board, who helped guide us in our efforts. The current members of
the Advisory Board are Constance Ahara, Kelley Butler, Bill Curtis, Conrad
Czaplicki, Raymond Dion, Judah Mogilensky, Martin Owens, Mark Paulk, Sue
Stetak, Charlie Weber, and Ron Willis. Former members who worked with us
on CMM v1.0 include Harry Carl, Jim Hess, Jerry Pixton, and Jim Withey.

This work was sponsored by the U.S. Department of Defense.

For Further Information
For further information regarding the CMM and its associated products,
including training on the CMM and how to perform software process
assessments and software capability evaluations, contact:

SEI Customer Relations
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
(412) 268-5800
Internet: customer-relations@sei.cmu.edu

26

7 4 0740-7459/94/$04.00 © 1994 IEEE J A N U A RY 19 9 5

F E A T U R E

MARK C. PAULK
Software Engineering Institute

he Capability Maturity ModelT Model for Software, developed
by the Software Engineering Institute,
and the ISO 9000 series of standards,
developed by the International Or-
ganization for Standardization, have
the common concern of quality and
process management. The two are dri-
ven by similar issues and are intuitively
correlated, but they differ in their
underlying philosophies: ISO 9001,
the standard in the 9000 series that
pertains to software development and
maintenance, identifies the minimal
requirements for a quality system,
while the CMM underlines the need
for continuous process improvement.
This statement is somewhat subjective,
of course; some members of the inter-
national standards community main-

tain that if you read ISO 9001 with
insight, it does address continuous
process improvement. Corrective
action, for example, can be construed
as continuous improvement. None-
theless, the CMM tends to address the
issue of continuous process improve-
ment more explicitly than ISO 9001.

This article examines how the two
documents relate. I have essentially
mapped clauses of ISO 9001 to CMM
key practices. The mapping is based on
an analysis of ISO 9001, ISO 9000-3,
TickIt (a British guide to using ISO
9000-3 and 9001), and the TickIt train-
ing materials.1 ISO 9000-3 elaborates
significantly on ISO 9001, while
the TickIt training materials help
in interpreting both ISO 9000-3 and
ISO 9001.

HOW ISO 9001
COMPARES WITH
THE CMM

Organizations concerned
with ISO 9001 certifica-

tion often question its
overlap with the

Software Engineering
Institute’s Capability
Maturity Model. The

author looks at 20
clauses in ISO 9001

and maps them to
practices in the CMM.
The analysis provides

answers to some
common questions about

the two documents.

As part of the analysis, I attempt to
answer some frequently asked ques-
tions, including

♦ At what level in the CMM would
an ISO 9001-compliant organization be?

♦ Can a level 2 (or 3) organization be
considered compliant with ISO 9001?

♦ Should my software-quality-
management and process-improve-
ment efforts be based on ISO 9001 or
on the CMM?

I assume the reader is familiar with
or has ready access to both ISO 9001
and the CMM. For those who need a
refresher, the box on pp.76-77 gives an
overview.

MAPPING SPECIFICS

My analysis involved mapping ISO
9001’s 20 clauses to CMM key prac-
tices at the sentence to subpractice
level.2,3 The analysis is admittedly sub-
jective — others may interpret both
ISO 9001 and the CMM differently
(indeed, reliable and consistent inter-
pretation and assessment are common
challenges for CMM-based appraisals
and ISO 9001 certification) — but
hopefully there is enough objectivity
to make the analysis worthwhile to
those who wonder where ISO 9001
certification fits into a continuous
quality-improvement strategy.

Table 1 is an overview of the map-
ping from ISO 9001 clause to CMM
key process areas and key practices.
The column labeled “Strong relation-
ship” contains key process areas and
common features for which the rela-
tionship is relatively straightforward.
The column labeled “Judgmental rela-
tionship” contains key process areas
and common features that may require
a significant degree of subjectivity in
determining a reasonable relationship.
Table A in the box on pp. 76-77
describes the focus of the key process
areas and common features. In the
Activities Performed common feature,
key practices focus on systematically
implementing a process, while the key
practices in other common features
focus on institutionalizing it.

Clause 4.1: Management responsibility.
ISO 9001 requires an organization to

♦ define, document, understand,
implement, and maintain a quality
policy;

♦ define responsibility and authori-
ty for personnel who manage, per-
form, and verify work affecting quali-
ty; and

♦ identify and provide verification
resources.

A designated manager ensures that
the quality program is implemented
and maintained.

The CMM addresses responsibility
for quality policy and verification at
level 2. This includes identifying
responsibility for performing all pro-
ject roles, establishing a trained soft-
ware quality assurance group, and
assigning senior management over-
sight of SQA activities.

As practices within common fea-
tures, the CMM identifies manage-
ment’s responsibility at both the
senior- and project-management levels
to oversee the software project, support
SQA audits, provide
leadership, establish
organizational structures
to support software
engineering, and allo-
cate resources.

You could argue that
this clause also addresses
the quality policy
described at level 4, but
the level 4 quality policy
is quantitative. ISO 9001
is somewhat ambiguous
about the role of measurement in the
quality-management system (see dis-
cussion under “Clause 4.20: Statistical
techniques”); an organization is
required to define and document quali-
ty objectives, but it does not have to
quantify them.

Clause 4.2: Quality system. ISO 9001
requires an organization to establish a
documented quality system, including
a quality manual and plans, proce-
dures, and instructions. ISO 9000-3
characterizes this quality system as an

integrated process throughout the
life cycle.

The CMM addresses quality-sys-
tem activities for verifying compliance
and for management processes at level
2. The specific procedures and stan-
dards a software project would use are
specified in the software-development
plan. At level 3, the organization must
have defined software-engineering
tasks that are integrated with manage-
ment processes, and it must be per-
forming them consistently. These
requirements correspond directly with
the ISO 9000-3 guidance for inter-
preting this clause.

As a practice in the Verifying
Implementation common feature, the
CMM identifies auditing to assure
compliance with the specified stan-
dards and procedures.

One arguable correspondence is to
the software process assets, including
standards, procedures, and process
descriptions, defined across the orga-
nization at level 3. Establishing such
organizational assets would certainly

contribute to implementing
the quality system, but the
standards and procedures in
this clause could be
addressed at the project
level. ISO 9001 discusses
the supplier’s quality sys-
tem, but it does not specifi-
cally address the relation-
ship between organizational
support and project imple-
mentation, as the CMM
does. ISO 9000-3, on the

other hand, has two sections on quality
planning: clause 4.2.3 discusses quality
planning across projects; clause 5.5
discusses quality planning within a
particular development.

Clause 4.3: Contract review. ISO 9001
requires organizations to review con-
tracts to determine if requirements are
adequately defined, agree with the bid,
and can be implemented.

The CMM addresses establishing a
contract at level 2. The organization must
document and review customer require-

I E E E S O FT W A R E 7 5

THIS ANALYSIS
IS SUBJECTIVE,
BUT I HOPE IT
IS OBJECTIVE
ENOUGH TO BE
WORTHWHILE.

7 6 J A N U A RY 19 9 5

F E A T U R E

ments, as allocated to software, and clarify
any missing or ambiguous requirements.
However, because the CMM is con-
strained to the software perspective, cus-
tomer requirements in general are
beyond the scope of the Requirements
Management key process area.

Also at level 2, the CMM describes

the proposal, statement of work, and
software-development plan that estab-
lish external (contractual) commit-
ments, which the software-engineer-
ing group and senior management
review.

Finally, the CMM explicitly add-
resses how the organization can

acquire software through subcontract-
ing with an external customer or other
type of subcontractor (the supplier
may also be a customer). ISO 9001’s
contract-review clause does not
explicitly describe the supplier’s role
when it is acting as a customer to a
subcontractor.

Below are highlights of
the Capability Maturity
Model Version 1.1 and ISO
9001 and 9000-3, the ISO
9000 standards that apply to
software development and
maintenance. For more
detail on the CMM, see the
CMM document.1,2 For
more details on using ISO
9000-3 and 9001, see those
documents3,4 and TickIt, the
British guide for applying
ISO 9001 to software.5

CMM. The Capability
Maturity Model describes
the principles and practices
underlying software-process
maturity and is intended to
help organizations improve
the maturity of their soft-
ware processes through an
evolutionary path from ad
hoc, chaotic to mature, disci-
plined. It may also be used
by an organization’s cus-
tomers to identify the
strengths, weaknesses, and
risks associated with their
software suppliers. Autho-
rized appraisers must go
through both CMM and
appraisal training. (For more
information on CMM-based
appraisal programs, contact
SEI customer relations at
(412) 268-5800.)

As Table A shows, the
CMM is organized into five

levels. Except for level 1,
each level has a set of key
process areas that an organi-
zation should focus on to
improve its software process.
Each key process area com-
prises a set of key practices
that indicate if the imple-
mentation and institutional-
ization of that area is effec-
tive, repeatable, and lasting.

For convenience, the key
practices in each key process
area are organized by com-
mon features:

♦ Commitment to Perform.
What actions must the orga-
nization take to ensure that
the process is established
and will endure? Includes
practices concerning policy
and leadership.

♦ Ability to Perform.
What preconditions must
exist in the project or orga-
nization to implement the
software process competent-
ly? Includes practices that
concern resources, training,
orientation, organizational
structure, and tools.

♦ Activities Performed.
What roles and procedures
are necessary to implement a
key process area? Includes
practices on plans, proce-
dures, work performed, track-
ing, and corrective action.

♦ Measurement and
Analysis. What procedures

are needed to measure the
process and analyze the
measurements? Includes
practices on process mea-
surement and analysis.

♦ Verifying Implemen-
tation. What steps are need-
ed to ensure that activities
are performed in compliance
with the established process?
Includes practices on man-
agement reviews and audits.

Satisfying a key process
area depends on both imple-
menting and institutionaliz-
ing the process. Implemen-
tation is described in the
Activities Performed com-
mon feature; institutionaliza-
tion is described by the other
common features.

ISO 9001, 9000-3. The
ISO 9000 standards specify
quality-system requirements
for use when a contract
between two parties requires
the demonstration of a sup-
plier’s capability to design
and supply a product. The
two parties could be an
external client and a suppli-
er, or both could be internal,
such as the marketing and
engineering groups within
the same company.

Of the ISO 9000 series,
ISO 9001 is the standard
most pertinent to software
development and mainte-

nance. Organizations use it
when they must ensure that
the supplier conforms to
specified requirements dur-
ing several stages of develop-
ment, including design,
development, production,
installation, and servicing.
ISO 9000-3 provides guide-
lines for applying ISO 9001
to the development, supply,
and maintenance of software.

Organizations typically
use ISO 9000 standards to
regulate their internal quali-
ty system and assure the
quality system of their sup-
pliers. In fact, the standards
are frequently used to regis-
ter a third-party’s quality
system. Certificates of regis-
tration have a defined scope
within an organization and
are issued by quality-system
registrars. Auditors are
trained in the ISO 9000
standards, but they may not
be trained in or knowledge-
able about software-specific
issues. If the scope of an
audit specifies software, soft-
ware-knowledgeable audi-
tors should be included on
the auditing team.

Status. Version 1.1 of the
CMM was published in
February 1993. The SEI is
now collecting change
requests and investigating

CMM AND ISO 9000 DOCUMENT OVERVIEW

Clause 4.4: Design control. ISO 9001
requires an organization to establish
procedures to control and verify
design. These include

♦ planning, design, and develop-
ment activities;

♦ defining organizational and tech-
nical interfaces;

♦ identifying inputs and outputs;
♦ reviewing, verifying, and validat-

ing the design; and
♦ controlling design changes.
ISO 9000-3 elaborates this clause

with clauses on the purchaser’s
requirements specification (5.3), devel-
opment planning (5.4), quality plan-

ning (5.5), design and implementation
(5.6), testing and validation (5.7), and
configuration management (6.1).

The CMM describes the life-cycle
activities of requirements analysis,
design, code, and test at level 3. Level
2 addresses planning and tracking of
all project activities, including these, as

I E E E S O FT W A R E 7 7

TABLE A
KEY PROCESS AREAS IN THE CMM

Level Key Process Areas

5 Optimizing
Continuous process improvement is enabled by quantitative feedback from
the process and from piloting innovative ideas and technologies.

4 Managed
Detailed measures of the software process and product quality are collected.
Both the software process and products are quantitatively understood and
controlled.

3 Defined
The software process for both management and engineering activities is docu-
mented, standardized, and integrated into a standard software process for the
organization. All projects use an approved, tailored version of the organiza-
tion’s standard software process for developing and maintaining software.

2 Repeatable
Basic project-management processes are established to track cost, schedule,
and functionality. The necessary process discipline is in place to repeat earlier
successes on projects with similar applications.

1 Initial
The software process is characterized as ad hoc, occasionally even chaotic.
Few processes are defined, and success depends on individual effort and heroics.

Defect prevention
Technology change management
Process change management

Quantitative process management
Software quality management

Organization process focus
Organization process definition
Training program
Integrated software management
Software product engineering
Intergroup coordination
Peer reviews

Requirements management
Software project planning
Software project tracking and oversight
Software subcontract management
Software quality assurance
Software configuration management

potential additions. The next
release, planned for late
1996, may add key process

areas and will harmonize the
CMM with ISO 9001 and
other standards. The ISO

9000 series was published in
1987. A minor revision to
ISO 9001 was published in

July 1994, and a major revi-
sion of the entire series is
planned for 1996.

REFERENCES

1. M. Paulk et al., Capability
Maturity Model for Software,
Version 1.1, Tech. Report
CMU/SEI-93-TR-24, Software
Eng. Inst., Pittsburgh, 1993.

2. M. Paulk et al., Key Practices of the

Capability Maturity Model, Version
1.1, Tech. Report CMU/SEI-93-
TR-25, Software Eng. Inst.,
Pittsburgh, 1993.

3. ISO 9000-3: Guidelines for the
Application of ISO 9001 to the
Development, Supply, and
Maintenance of Software, Int’l

Org. for Standardization,
Geneva, 1991.

4. ISO 9001: Quality Systems —
Model for Quality Assurance in
Design/Development,
Production, Installation, and
Servicing, Int’l Org. for
Standardization, Geneva, 1994.

5. TickIT: A Guide to Software
Quality Management System
Construction and Certification
Using EN29001, Issue 2.0, UK
Dept. of Trade and Industry and
the British Computer Society,
London, 1992.

7 8 J A N U A RY 19 9 5

TABLE 1
SUMMARY MAPPING BETWEEN ISO 9001 AND THE CMM

ISO 9001 Clause Strong Relationship Judgmental Relationship

4.1: Management responsibility

4.2: Quality system

4.3: Contract review

4.4: Design control

4.5: Document and data control

4.6: Purchasing

4.7: Control of customer-supplied product

4.8: Product identification and
traceability

4.9: Process control

4.10: Inspection and testing

4.11: Control of inspection,
measuring, and test equipment

4.12: Inspection and test status

4.13: Control of nonconforming
product

4.14: Corrective and preventive action

4.15: Handling, storage, packaging,
preservation, and delivery

4.16: Control of quality records

4.17: Internal quality audits

4.18: Training

4.19: Servicing

4.20: Statistical techniques

Commitment to perform
Software project planning
Software project tracking and oversight
Software quality assurance

Verifying implementation
Software project planning
Software quality assurance
Software product engineering

Requirements management
Software project planning

Software project planning
Software project tracking and oversight
Software configuration management
Software product engineering

Software configuration management
Software product engineering

Software subcontract management

Software configuration management
Software product engineering

Software project planning
Software quality assurance
Software product engineering

Software product engineering
Peer reviews

Software product engineering

Software configuration management
Software product engineering

Software configuration management
Software product engineering

Software quality assurance
Software configuration management

Software configuration management
Software product engineering
Peer reviews

Verifying implementation
Software quality assurance

Ability to perform
Training program

Measurement and analysis

Ability to perform
Verifying implementation
Software quality management

Organization process definition

Software subcontract management

Software quality management

Software subcontract management

Quantitative process management
Technology change management

Defect prevention

Software configuration management
Software product engineering

Organization process definition
Quantitative process management
Software quality management

well as configuration management of
software work products.

ISO 9001, as revised in 1994,
requires design reviews. ISO 9000-3
states that the supplier should carry
out reviews to ensure that require-
ments are met and design methods
are correctly carried out. However,
although design reviews are required,
organizations have a range of options
for satisfying this clause, from techni-
cal reviews to inspections. In contrast,
the CMM specifically calls out peer
reviews at level 3 and identifies a num-
ber of work products that should
undergo such a review.

TickIt training clarifies the ISO
9001 perspective by listing three exam-
ples of design reviews: Fagan inspec-
tions, structured walkthroughs, and
peer reviews (in the sense of a desk
check). The training also states (on
page 17.10) that “an auditor will need
to be satisfied from the procedures and
records available that the reviews with-
in an organization are satisfactory con-
sidering the type and criticality of the
project under review.”1

The CMM describes more formal,
quantitative aspects of the design
process at level 4, but ISO 9001 does
not require this degree of formality.

Clause 4.5: Document and data control.
ISO 9001 requires an organization to
control the distribution and modifica-
tion of documents and data. The
CMM describes the configuration-
management practices characterizing
document and data control at level 2.
The documentation required to oper-
ate and maintain the system is specifi-
cally called out at level 3. The specific
procedures, standards, and other doc-
uments that may be placed under
configuration management are identi-
fied in the different key process areas
in the Activities Performed common
feature.

Clause 4.6: Purchasing. ISO 9001
requires organizations to ensure that
purchased products conform with
specified requirements. This includes

evaluating potential subcontractors
and verifying purchased products.

The CMM addresses custom soft-
ware development at level 2, including
the evaluation of subcontractors and
acceptance testing of subcontracted
software.

Clause 4.7: Control of customer-supplied
product. ISO 9001 requires an organiza-
tion to verify, control, and maintain
any customer-supplied material. ISO
9000-3 discusses this clause in the con-
text of included software product (6.8),
also addressing commercial-off-the-
shelf software.

The only CMM practice describing
the use of purchased software is a sub-
practice at level 3, and the context is
identifying off-the-shelf or reusable
software as part of planning. The inte-
gration of off-the-shelf and reusable
software is one of the CMM’s weaker
areas. In fact, this clause, especially as
expanded in ISO 9000-3, cannot be
considered adequately covered by the
CMM. It would be reasonable, though
not sufficient, to apply the acceptance
testing practice for subcontracted soft-
ware at level 2 to any included soft-
ware product.

I have written a change request to
CMM version 1.1 to incorporate prac-
tices that address product evaluation
and the inclusion of off-the-shelf soft-
ware and other types of software that
have not been developed internally.

Clause 4.8: Product identification and
traceability. ISO 9001 requires an orga-
nization to be able to identify and trace
a product through all stages of produc-
tion, delivery, and installation. The
CMM covers this clause primarily at
level 2 in the context of configuration
management, but states the need for
consistency and traceability between
software work products at level 3.

Clause 4.9: Process control. ISO 9001
requires an organization to define and
plan its production processes. This
includes carrying out production
under controlled conditions, according

to documented instructions. When an
organization cannot fully verify the
results of a process after the fact, it
must continuously monitor and con-
trol the process. ISO 9000-3 clauses
include design and implementation
(5.6); rules, practices, and conventions
(6.5); and tools and techniques (6.6).

In the CMM, the specific proce-
dures and standards that would be
used in the software-production
process are specified in the software-
development plan at level 2. The defi-
nition and integration of software-pro-
duction processes, and the tools to
support these processes, are described
at level 3. Level 4 addresses the quan-
titative aspect of control, exemplified
by statistical process control, but an
organization typically would not have
to demonstrate this level of control to
satisfy this clause. Also, clause 6.6 in
ISO 9000-3 states that “the supplier
should improve these tools and tech-
niques as required.” This corresponds
to transitioning new technology into
the organization, a level 5 focus.

Clause 4.10: Inspection and testing. ISO
9001 requires an organization to
inspect or verify incoming materials
before use and to perform in-process
inspection and testing. The organiza-
tion must also perform final inspection
and testing before the finished product
is released and keep inspection and test
records.

I have already described how the
CMM deals with issues surrounding the
inspection of incoming material (“Clause
4.7: Control of customer-supplied prod-
uct”). The CMM describes testing and
in-process inspections (strictly for soft-
ware) at level 3.

Clause 4.11: Control of inspection, mea-
suring, and test equipment. ISO 9001
requires an organization to control,
calibrate, and maintain any equipment
used to demonstrate conformance.
When test hardware or software is
used, it must be checked before use
and rechecked at prescribed intervals.
ISO 9000-3 clarifies this clause with

I E E E S O FT W A R E 7 9

clauses on testing and validation (5.7);
rules, practices, and conventions (6.5);
and tools and techniques (6.6).

The CMM generically addresses
this clause under the testing practices
in Software Product Engineering. Test
software is specifically called out in the
Ability to Perform common feature in
the practice that describes tools that
support testing (Ability 1.2).

Clause 4.12: Inspection and test status.
ISO 9001 requires an organization to
maintain the status of inspections and
tests for items as they move through
various processing steps. The CMM
addresses this clause with practices on
problem reporting and configuration
status at level 2 and by testing practices
at level 3.

Clause 4.13: Control of nonconforming
product. ISO 9001 requires an organiza-
tion to control a nonconforming prod-
uct — one that does not satisfy speci-
fied requirements — to prevent inad-
vertent use or installation. ISO 9000-3
maps this concept to clauses on design
and implementation (5.6); testing and
validation (5.7); replication, delivery,
and installation (5.9); and configura-
tion management (6.1).

The CMM does not specifically
address nonconforming products. In
ISO 9000-3, the control issue essen-
tially disappears among a number of
related processes spanning the soft-
ware life-cycle. In the CMM, the sta-
tus of configuration items, which
would include the status of items that
contain known defects not yet fixed, is
maintained at level 2. Design, imple-
mentation, testing, and validation are
addressed at level 3.

Clause 4.14: Corrective and preventive
action. ISO 9001 requires an organiza-
tion to identify the causes of a noncon-
forming product. Corrective action is
directed toward eliminating the causes
of actual nonconformities. Preventive
action is directed toward eliminating
the causes of potential nonconformi-
ties. ISO 9000-3 quotes this clause

verbatim, with no elaboration, from
the 1987 release of ISO 9001.

A literal reading of this clause
would imply many of the CMM’s
practices in the level 5 key process
area, Defect Prevention. According to
the TickIt auditors’ guide4 (pages 139-
140) and discussions with ISO 9000
auditors, corrective action is driven
primarily by customer complaints.
The software-engineering group
should look at field defects, analyze
why they occurred, and take corrective
action. This would typically occur
through software updates and patches
distributed to the fielded software.

Under this interpretation of the
clause, an appropriate mapping would
be to level 2’s problem reporting, fol-
lowed by controlled maintenance of
baselined work products.

Another interpretation described in
section 23 of the TickIt training litera-
ture1 is that corrective action is to add-
ress noncompliance identified in an
audit, whether external or internal.
This interpretation maps to the CMM’s
level 2 key process area, Software Qual-
ity Assurance.

How you interpret “preventive
action” is a controversial issue in ap-
plying ISO 9001 to software. Some
auditors seem to expect a defect-pre-
vention process similar to that found
in a manufacturing environment.
Others require only that an organiza-
tion address user-problem reports. It is
debatable how much of the CMM’s
level 5 in-process causal analysis and
defect prevention is necessary to satisfy
this clause.

Clause 4.15: Handling, storage, packag-
ing, preservation, and delivery. ISO 9001
requires organizations to establish and
maintain procedures for handling,
storage, packaging, and delivery. ISO
9000-3 maps this to clauses on accep-
tance (5.8) and replication, delivery,
and installation (5.9).

The CMM does not cover replica-
tion, delivery, and installation. It
addresses the creation and release
of software products at level 2, and

acceptance testing at level 3. The
CMM does not, however, describe
practices for delivering and installing
the product. I have written a change
request to CMM version 1.1 to incor-
porate a practice for these areas.

Clause 4.16: Control of quality records.
ISO 9001 requires an organization to
collect and maintain quality records. In
the CMM, the practices defining the
maintenance of quality records are dis-
tributed throughout the key process
areas as part of the Activities Per-
formed common feature. Specific to
this clause are the problem reporting
described at level 2 and the testing and
peer review practices, especially the
collection and analysis of defect data,
at level 3.

Clause 4.17: Internal quality audits. ISO
9001 requires an organization to plan
and perform audits. The results of
audits are communicated to manage-
ment, and any deficiencies found are
corrected.

The CMM describes the auditing
process at level 2. Auditing practices to
ensure compliance with the specified
standards and procedures are identi-
fied in the Verifying Implementation
common feature.

Clause 4.18: Training . ISO 9001
requires an organization to identify
training needs, provide training (since
selected tasks may require qualified
personnel), and maintain training
records.

The CMM identifies specific train-
ing needs in the training and orienta-
tion practices in the Ability to Perform
common feature. It describes the gen-
eral training infrastructure, including
maintaining training records, at level 3.

Clause 4.19: Servicing. ISO 9001
requires an organization to perform
servicing activities when such activities
are part of a specified requirement.
ISO 9000-3 addresses this clause as
maintenance (5.10).

Although the CMM is intended to

8 0 J A N U A RY 19 9 5

F E A T U R E

be applied in both the software devel-
opment and maintenance environ-
ments, the practices in the CMM do
not directly address the unique aspects
that characterize the maintenance
environment. Maintenance is embed-
ded throughout the CMM, but organi-
zations must correctly interpret these
practices in the development or main-
tenance context. Maintenance is not,
therefore, a separate process in the
CMM. Change requests for CMM
version 1.0 expressed a concern about
using the CMM for maintenance pro-
jects, and the SEI changed some word-
ing for CMM version 1.1 to better
address the maintenance environment.
The SEI anticipates that this will
remain a topic of discussion as it pro-
vides guidance for tailoring the CMM
to different environments, such as
maintenance, and begins the next revi-
sion cycle for the CMM.

Clause 4.20: Statistical techniques. ISO
9001 states that organizations must
identify adequate statistical techniques
and use them to verify the acceptability
of process capability and product char-
acteristics. ISO 9000-3 simply charac-
terizes this clause as measurement (6.4).

In the CMM, product measure-
ment is typically incorporated into the
various practices within the Activities
Performed common feature. Process
measurement is described as part of
the Measurement and Analysis com-
mon feature.

Level 3 describes the establishment
of an organization-wide process data-
base for collecting process and product
data. It seems likely that most auditors
would accept project-level data (as
described at level 2) to satisfy this
clause. However, at least a few auditors
require an organization-level historical
database and the use of simple statisti-
cal control charts.

If you infer statistical process con-
trol from this clause, an organization
would satisfy it at level 4. To quote
ISO 9000-3, however, “there are cur-
rently no universally accepted measures
of software quality.” Some auditors

look for the use of statistical tools, such
as Pareto analysis. Others are satisfied
by any consistently collected and used
measurement data. In general, the only
absolute is that auditors vary signifi-
cantly in how they interpret this clause.

Summary. Clearly there is a strong
correlation between ISO 9001 and the
CMM, although some issues in ISO
9001 are not covered in the CMM, and
vice versa. The level of detail differs
significantly: section 4 in ISO 9001 is
about five pages long; sections 5, 6, and
7 in ISO 9000-3 comprise about 11
pages; and the CMM is more than 500
pages. Judgment is needed to deter-
mine the exact correspondence, given
the different levels of abstraction.

As Table 1 shows, the clauses in
ISO 9001 with no strong relationships
to the CMM key process areas, and
that are not well addressed in the
CMM, are control of customer-sup-
plied product (4.7) and handling, stor-
age, packaging, preservation, and
delivery (4.15). The clause in ISO
9001 that is addressed in the CMM in

a completely distributed fashion is ser-
vicing (4.19). The clauses in ISO 9001
for which the exact relationship to the
CMM is subject to significant debate
are corrective and preventive action
(4.14) and statistical techniques (4.20).

As I stated earlier, the biggest dif-
ference between the two documents is
the explicit emphasis of the CMM on
continuous process improvement. ISO
9001 addresses only the minimum cri-
teria for an acceptable quality system.
Another difference is that the CMM
focuses strictly on software, while ISO
9001 has a much broader scope that
encompasses hardware, software,
processed materials, and services.

The biggest similarity between the
two documents is their bottom line:
“Say what you do; do what you say.”
The fundamental premise of ISO 9001
is that organizations should document
every important process and check the
quality of every deliverable through a
quality-control activity. ISO 9001
requires documentation that contains
instructions or guidance on what
should be done or how it should be

I E E E S O FT W A R E 8 1

Standard,
consistent
process

Predictable
process

Continuously
improving

process

Disciplined
process

Optimizin
(5)

Repeatable
(2)

Defined
(3)

Managed
(4)

Figure 1. Key process area profile for an ISO 9001-compliant organization. Dark
shading represents practices that ISO 9001 or ISO 9000-3 directly address; light
shading indicates practices that may be addressed, depending on how you interpret
ISO 9001; and unshaded areas indicate practices not specifically addressed.

8 2 J A N U A RY 19 9 5

F E A T U R E

done. The CMM shares this emphasis
on processes that are documented and
practiced as documented. Phrases such
as conducted “according to a docu-
mented procedure” and following “a
written organizational policy” charac-
terize the key process
areas in the CMM.

On a more detailed
level, some clauses in
ISO 9001 are easily
mapped to their equiva-
lent CMM practices.
Other relationships map
in a many-to-many fash-
ion, since the two docu-
ments are structured dif-
ferently. For example,
the training clause (4.18)
in ISO 9001 maps to both the
Training Program key process area
and the training and orientation prac-
tices in all the key process areas.

COMPLIANCE ISSUES

At first glance, an organization with
an ISO 9001 certificate would have to
be at level 3 or 4 in the CMM. In real-
ity, some level 1 organizations have
been certified. One reason for this dis-
crepancy is ISO 9001’s high level of
abstraction, which causes auditors to
interpret it in different ways. If the
auditor certifying the organization has
had TickIt training, for example, the
design reviews in ISO 9001 will corre-
spond directly to the CMM’s peer
reviews, which are at level 3. But not
all auditors are well-versed in software
development. The virtue of a program
like TickIt is that it produces auditors
who understand how to apply ISO
9001 to software.

Another reason for the discrepancy
is that an auditor may not require mas-
tery to satisfy the corresponding ISO
9001 clause.

Figure 1 shows how an ISO-9001-
compliant organization that has imple-
mented no other management or engi-
neering practices except those called
out by ISO 9001 rates on the CMM.
The size of the bar indicates the per-

centage of practices within the key
process area that are addressed in
either ISO 9001 or ISO 9000-3. The
figure shows areas that have a direct
relationship to clauses in these docu-
ments (dark shading), areas for which

the relationship is subject
to interpretation (light
shading), and areas that the
clauses do not directly
address (white).
Note the following about
Figure 1:
♦ Every key process area at
level 2 is strongly related to
ISO 9001.
♦ Every key process area is
at least weakly related to
ISO 9001 under some

interpretation.
On the basis of this profile, an

organization assessed at level 1 could
be certified as compliant with ISO
9001. That organization would, how-
ever, have to have significant process
strengths at level 2 and noticeable
strengths at level 3. Private discussions
indicate that many level 1 organiza-
tions have received ISO 9001 certifi-
cates. If an organization is following
the spirit of ISO 9001, it is likely to be
near or above level 2. However, orga-
nizations have identified significant
problems during a CMM-based assess-
ment that had not surfaced during a
previous ISO 9001 audit.5 This seems
to be related to the greater depth of a
CMM-based investigation.

lthough the CMM does not ade-A quately address some specific
issues, in general it encompasses the
concerns of ISO 9001. The converse
is less true. ISO 9001 describes only
the minimum criteria for an adequate
quality-management system, rather
than addressing the entire continuum
of process improvement, although
future revisions of ISO 9001 may
address this concern. The differences
are sufficient to make a rigid mapping
impractical, but the similarities pro-
vide a high degree of overlap.

To answer the three questions I
listed in the beginning of this article:

♦ An ISO 9001-compliant organi-
zation would not necessarily satisfy all
the key process areas in level 2 of the
CMM, but it would satisfy most of the
level 2 and many of the level 3 goals.
Further, because ISO 9001 doesn’t
address all the CMM practices, a level
1 organization could receive ISO 9001
registration.

♦ A level 2 (or 3) organization
would probably be considered compli-
ant with ISO 9001 but even a level 3
organization would need to ensure
that it adequately addressed the deliv-
ery and installation process described
in clause 4.15 of ISO 9001, and it
should consider the use of included
software products, as described in
clause 6.8 of ISO 9000-3. With this
caveat, obtaining certification should
be relatively straightforward for a level
2 or higher organization.

♦ As to whether software process
improvement should be based on the
CMM or ISO 9001, the short answer is
that an organization may want to con-
sider both, given the significant degree
of overlap. A market may require ISO
9001 certification; addressing the con-
cerns of the CMM would help organi-
zations prepare for an ISO 9001 audit.
Conversely, level 1 organizations would
certainly profit from addressing the
concerns of ISO 9001. Although either
document can be used alone to structure
a process-improvement program, the
more detailed guidance and software
specificity provided by the CMM sug-
gests that it is the better choice,
although admittedly this answer may be
biased.

In any case, organizations should
focus on improvement to build a com-
petitive advantage, not on achieving
a score — whether that is a maturity
level or a certificate. The SEI advo-
cates addressing continuous process
improvement as encompassed by the
CMM, but even then there is a need
to address the larger business context
in the spirit of Total Quality
Management.

EVERY CMM KEY
PROCESS AREA
IS AT LEAST
WEAKLY RELATED
TO IS0 9001
IN SOME WAY.

◆

SOAPBOX
AVAILABLE

for practitioners
with axes to grind,
bones to pick, and

fires to light.

IEEE

IEEE Software would like to hear from you.
With the debut this issue of our Soapbox

department, we’ve initiated a dialogue among
practitioners and provided a forum for

“practitioner-to-practitioner” exchanges.
Tell us about the issues you face and what types of
articles or columns you would find most helpful.

Unsolicited, off-the-cuff, and back-of-the-envelope
contributions are welcome.

We’ll even translate, if you’re more
comfortable writing in your native language.

To contribute, please contact these regional
representatives:

North and South America:
Ann Miller

Motorola Satellite Communications
Mail Drop AZ10 G1137

2501 S. Price Rd.
Chandler AZ 85248-2899

miller@sat.mot.com

Asia and Far East:
Tomoo Matsubara

Matsubara Consulting
1-9-6 Fujimigaoka, Ninomiya

Nakagun, Kanagawa 259-01 Japan
matsu@sran125.sra.co.jp

Western Europe, Mideast, and Africa:
Annie Kuntzmann-Combelles

Objectif Technologie
31 Ave. du General Leclerc

Bourg la-Reine, France F-92340
akc@corelis.fr

Central and Eastern Europe:
Donna Kaspersen

Development Director, Unisys
Czech Savings Bank, TIS Project

Blaniska 25
120 00 Praha 2 Czech Republic
71020.705@compuserve.com

For general author guidelines,
send a request to aburgess@computer.org or to

(714) 821-4010, fax.

I E E E S O FT W A R E

Mark C. Paulk is a senior
member of the technical staff at
the Software Engineering
Institute, where he is product
manager for version 2 of the
Capability Maturity Model. At
the SEI, he was also project
leader for the CMM version 1.1
development. Before joining the
SEI, Paulk worked on distrib-
uted real-time systems for

System Development Corp. (later Unisys Defense
Systems) at the Ballistic Missile Defense Advanced
Research Center.

Paulk received a BS in mathematics from the
University of Alabama, Huntsville, and an MS in com-
puter science from Vanderbilt University. He is a senior
member of the IEEE and a member of the American
Society for Quality Control.

Address questions about this article to Paulk at Software
Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA 15213-3890; mcp@sei.cmu.edu.

ACKNOWLEDGMENTS
I thank the many people who commented on

the early drafts of this article and who discussed
the relationships between ISO 9001 and the
CMM. In some cases, we have agreed to disagree,
but the discussions were always interesting.
Specifically, I thank Peter Anderson, Robert
Bamford, Kelley Butler, Gary Coleman, Taz
Daughtrey, Darryl Davis, Bill Deibler, Alec
Dorling, George Kambic, Dwight Lewis, Stan
Magee, Helen Mooty, Don O’Neill, Neil Potter,
Jim Roberts, John Slater, and Charlie Weber.

This work is sponsored by the US
Department of Defense under contract
F19628-90-C-003.

REFERENCES
1. Lloyd’s Register TickIT Auditors’ Course, Issue 1.4,

Lloyd’s Register, Mar. 1994.

2. Mark C. Paulk, “A Comparison of ISO 9001 and
the Capability Maturity Model for Software,”
Tech. Report CMU/SEI-94-TR-2, Software Eng.
Inst., Pittsburgh, July 1994.

3. M. Paulk, “Comparing ISO 9001 and the
Capability Maturity Model for Software,” Software
Quality J., Dec. 1993, pp. 245-256.

4. TickIT: A Guide to Software Quality Management
System Construction and Certification Using
EN29001, Issue 2.0, UK Dept. of Trade and
Industry and the British Computer Society,
London, 1992.

5. F. Coallier, “How ISO 9001 Fits Into the
Software World,” IEEE Software, Jan. 1994,
pp. 98-100.

KPA Profile for an ISO 9001
Compliant Organization

Process Change Management

Technology Change Management

Defect Prevention

Software Quality Management

Quantitative Process Management

Peer Reviews

Intergroup Coordination

Software Product Engineering

Integrated Software Management

Training Program

Organization Process Definition

Organization Process Focus

Software Configuration Management

Software Quality Assurance

Software Subcontract Management

Software Project Tracking & Oversight

Software Project Planning

Requirements Management

Not
Satisfied

Fully
SatisfiedCMM Key Process Areas

Strong relationship Judgmental relationship Not related

Software CMM Q&A #1

Welcome

Capability
Maturity
Modeling

Team &
Personal
Software
Process

IDEAL Model

Risk
Management

Software
Engineering
Measurement &
Analysis (SEMA)

Software
Engineering
Information
Repository
(SEIR)

Software
Process
Improvement
Networks
(SPINs)

Appraiser
Program

Acronyms

SEI Initiatives

Conferences

Education &
Training

Questions and Answers about the Software Capability
Maturity Model® (SW-CMM® (Q&A #1)

Mark C. Paulk
Issue #1, 5 April 1994

I am frequently asked questions on how to interpret the CMM in various contexts. The
following "newsletter" may be of general use. It reproduces the 5 April 1994 mailing to
the CMM Correspondence Group. I have to caveat these answers by saying that they
represent my opinion and do not represent official SEI positions. They have typically not
been internally reviewed, but they do represent a well-informed opinion on what the
CMM means.

You are welcome to ask questions on the CMM. I do not guarantee quick answers,
although I'll try to get back to you as soon as possible. Sometimes that's the same day I
receive a question, sometimes it may be a month, depending on my travel schedule
and work load. I prefer to receive questions in writing by e-mail. I will sanitize both
question and answer before distribution in this newsletter.

Mark Paulk
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
FAX: 412-268-5758
E-mail: mcp@sei.cmu.edu

The following "questions and answers" are based on discussions held at the CMM
workshop on tailoring the CMM held 29-30 March 1994.

Tailoring the CMM

Tailoring the CMM to the specific needs of an organization or class of project is a hot
topic right now. These are some of my personal opinions on tailoring; they may or may
not be incorporated into the planned SEI report on tailoring guidelines.

As a concept, tailoring lies somewhere between interpreting the CMM and
implementing a software process improvement program. I would define interpretation
as "a statement, preferably documented, of how an implementation(s) of a process
relates to the CMM." I would define tailoring as "a documented description of how a
process should be implemented across multiple [1] projects at about the same level of
abstraction as the CMM (i.e., what, but shading into how), with a statement of the
relationship to the CMM's concepts and practices." A tailored CMM might have to be
interpreted when appraising a specific implementation, although the interpretation
should be minimal.

http://www.sei.cmu.edu/cmm/docs/q-and-a.1.html (1 of 9) [3/16/2004 4:41:48 PM]

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/cmm/docs/q-and-a.1.html?owner=mcp
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/sei-home.html
http://www.sei.cmu.edu/sei-home.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/tsp/
http://www.sei.cmu.edu/tsp/
http://www.sei.cmu.edu/ideal/ideal.html
http://www.sei.cmu.edu/ideal/ideal.html
http://www.sei.cmu.edu/programs/sepm/risk/index.html
http://www.sei.cmu.edu/programs/sepm/risk/index.html
http://www.sei.cmu.edu/sema/welcome.html
http://www.sei.cmu.edu/sema/welcome.html
http://seir.sei.cmu.edu/
http://seir.sei.cmu.edu/
http://www.sei.cmu.edu/collaborating/spins/spins.html
http://www.sei.cmu.edu/collaborating/spins/spins.html
http://www.sei.cmu.edu/managing/app.directory.html
http://www.sei.cmu.edu/managing/app.directory.html
http://www.sei.cmu.edu/about/acronyms/help.acronyms.html
http://www.sei.cmu.edu/about/acronyms/help.acronyms.html
http://www.sei.cmu.edu/about/overview/sei/initiatives.html
http://www.sei.cmu.edu/about/overview/sei/initiatives.html
http://www.sei.cmu.edu/products/events/events.html
http://www.sei.cmu.edu/products/events/events.html
http://www.sei.cmu.edu/products/courses/courses.html
http://www.sei.cmu.edu/products/courses/courses.html
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html
mailto:mcp@sei.cmu.edu

Software CMM Q&A #1

The difference between tailoring and interpreting is based on the need for reliability and
consistency. Interpretation implies judgement, which may lead to some degree of
unreliability and inconsistency. Tailoring may be cost effective if an organization is
concerned about SCEs or if the tailoring is a first step in process definition and
improvement that will be applied across projects.

Although the key practices and sub-practices describe the normative behavior of large,
government contracting organizations, I consider application domain and environment
the dominant factors in determining the degree of formality and rigor that is needed by a
project. For example, a small commercial project developing life-critical medical
software would be expected to follow a formal, rigorous process.

Nonetheless, an organization does not need to implement every practice exactly as
stated to fully satisfy a key process area and to achieve its goals. For example, an
organization using the Cleanroom approach would not implement some of the testing
practices in Software Product Engineering as described.

One reason that tailoring may be needed (at least for consistency and reliability of
appraisals) is that a practice or process which is adequate to satisfy the CMM in one
context may be inadequate in another context based on the degree of formality and
rigor that is needed. For example, I would not normally expect small project SCM to
require the same degree of documentation and formality as large project SCM,
although I would expect even small projects to achieve the goals of that KPA.

Can key practices be modified?

This decomposes into three cases that I can think of:

1. Mapping of roles, concepts, and terminology. The terminology in the CMM is
hopefully reasonably clear, but the different organizational structures, cultures,
process implementations, technologies, methodologies, etc., mean that it is
necessary to map the roles in the CMM to job titles/functional responsibilities in
the organization, to map process concepts to the specific methodologies and
technologies of the implemented process(es), and to map key process areas to
life cycle activities. Recasting the CMM in the language of an organization can
significantly help communication and consistency.

2. Alternate implementations. For example, an organization that does Cleanroom
has an alternate implementation for some of the testing practices in Software
Product Engineering. Whether one views this as an interpretation or tailoring
issue, we certainly want to allow for these kinds of legitimate variations, so long
as we understand the relationship between the implemented process and the
practices in the CMM.

3. Specific implementations. For example, requiring the use of COCOMO in
planning or OO methods in development. This implies a more specific
requirement and might be useful in guiding process definition and improvement.
This tailoring would, however, be more specific than the CMM and a violation of
the tailoring would not necessarily imply that the equivalent practices in the
CMM were not satisfactorily addressed.

The first case is very useful in interpreting the CMM. The last two cases edge into
defining the organization's standard software process but may still be in the gray area
between tailoring and defining.

A version of the CMM with modified practices could be legitimately claimed as "a

http://www.sei.cmu.edu/cmm/docs/q-and-a.1.html (2 of 9) [3/16/2004 4:41:48 PM]

Software CMM Q&A #1

tailored version of the CMM." This kind of tailoring was the focus of the CMM Tailoring
Workshop held on 29-30 March 1994. There are more extensive adaptations of the
CMM that might be desirable, however, and these were raised as issues at the
workshop.

Can key process areas be modified?

For example, an organization might want to specify inspections for Peer Reviews.
Tailoring and process definition have become almost indistinguishable at this point. So
long as the modification is more specific than the KPA, satisfying the more specific
requirement would satisfy the KPA. Not satisfying a more specific requirement,
however, would not necessarily imply that the KPA was not satisfied (although it would
indicate that the defined process was not implemented and this is an SQA problem).

I am unable to identify off-hand a reasonable meaning for "less specific variation of a
KPA," although I can for a key practice (e.g., for small projects). For example, someone
might want to do "Reviews" rather than Peer Reviews and implement them via
PDR/CDR kinds of formal review. If such a tailoring was created, it would mean that the
CMM KPA (Peer Reviews for the example) was not investigated, and no maturity level
could be assigned that depended on the "less specific" KPA.

Modifying key process areas is essentially just a variation of modifying key practices,
and I would consider this a tailored version of the CMM, with the caveats on scoring
already mentioned. The essential point is a clear understanding of the relationship
between the KPA in the CMM (and its goals) and the tailored KPA.

Can key process areas be deleted from the CMM?

That may be a legitimate business decision, but it should imply that those KPAs are
explicitly identified as Not Investigated, and no maturity level can be assigned which
has "deleted" KPAs at or below it.

I would consider a tailoring that deleted KPAs a legitimate one, but care would have to
be taken in reporting the score. It is legitimate to claim that an organization is Level 2
that does not do Software Subcontract Management (i.e., it was scored as Not
Applicable), but it would not be legitimate to claim an organization was Level 2 if
Software Subcontract Management was tailored out of the CMM. This may seem a
subtle distinction, but it is necessary to maintain integrity and comparability of appraisal
results. Any KPA that is "not investigated" (as distinct from "not applicable") limits the
SEI maturity level that can be assigned and should be noted in briefings and reports.

Can key process areas be added to the CMM?

For example, an organization might identify a need for KPAs on testing and system
engineering. This could be a legitimate approach to process improvement (or contract
monitoring) to address specific business or project needs, but there are a couple of
provisos:

● The new KPAs should be documented, preferably using the template used in
the CMM, and available to everyone who needs them.

● The new KPAs should not be assigned to maturity levels, since they are not part
of the maturity framework (e.g., no Level 2 KPA on testing).

http://www.sei.cmu.edu/cmm/docs/q-and-a.1.html (3 of 9) [3/16/2004 4:41:48 PM]

Software CMM Q&A #1

Adding KPAs is a particular concern for software capability evaluations. Some
contractors are concerned that such tailorings prevent a "level playing field" and that
the tailoring will be aimed at selecting a particular contractor. The SEI, however, has no
control over how acquisition agencies choose to implement SCEs, although we provide
guidelines, training, and recommendations to help acquisition agencies implement
SCEs consistently. (Also note that industry can and does evaluate software contractors,
and there are similar concerns in that environment.)

The CMM provides a publicly available set of criteria for appraising the software
process and guiding an improvement effort. Any tailorings of the CMM that an
organization uses should be appropriately documented and communicated to all
concerned parties in a timely manner. Any tailoring of the CMM should not be
advertised as "the" CMM, but rather as "the tailoring of the CMM for XYZ."

The relevant point, as Charlie Weber has pointed out, is whether you are tailoring a top-
level key practice or a sub-practice. To tailor a goal, you should sweat blood (and then
be conservative in mapping the relationship to "the" CMM). To tailor a key practice, you
should just sweat. To tailor a sub-practice, your conscience should hardly bother you.

The CMM is not exhaustive, and it is not a silver bullet. Tailoring the CMM may be
appropriate and desirable to address the business needs of an organization. While
recognizing that need, we also need to maintain the integrity of the CMM as an asset to
the software community.

The key process area template

A template was generally used to express the key process areas using a consistent
structure and phrasing. This key process area template, with the "standard" wording
used in the various key process areas, follows.

I hope this template will help people understand the CMM and its structure better and
help them to use the CMM more efficiently.

There are cases where the practices deliberately deviate from this template. For
example, in Verifying Implementation for SQA, the SQA group does not audit itself.

Please note that the numbering of the key practices is not significant, since there are
exceptions and additions to the template.

Also note that:

● goals and common features are delimited by underlined headers
● key practices are labeled with a noun representing their common feature and a

number, e.g., Commitment 1 and Ability 2
● key practices are in bold type, e.g., Ability 1 A group that is responsible for

exists.
● sub-practices follow their associated key practice in smaller type and are

labeled with a number, e.g., 1.
● practices may be followed by boxed text containing elaboration, cross

references, or examples

{Key Process Area X}

http://www.sei.cmu.edu/cmm/docs/q-and-a.1.html (4 of 9) [3/16/2004 4:41:48 PM]

Software CMM Q&A #1

The purpose of {Key Process Area X} is {statement}.

{Key Process Area X} involves {summary}.

{Additional elaboration on Key Process Area X as appropriate.}

Goals

Goal 1 - {Process summary statement as goal.}

Goal 2 - {Process summary statement as goal...}

Commitment to perform

Commitment 1 - The project follows a written organizational policy for {X}.

-- or --

The organization follows a written policy for {X}.
This policy typically specifies that:
1. {Sub-practices for Commitment 1...}

Ability to perform

Ability 1 - A group that is responsible for {X} exists.
1. {Sub-practices for Ability 1...}

Ability 2 - Adequate resources and funding are provided for {X}.
1. {Sub-practices for Ability 2...}
2. Tools to support the activities for {X} are made available.

Examples of {X} tools include:
- {examples of tools}

Ability 3 - {Roles} are trained {to perform their X activities}.
-- or --
{Roles} - receive required training {to perform their X activities}.

Examples of training include:
- {examples of training}

Ability 4 - {Roles} receive orientation in {X}.

Examples of orientation include:
- {examples of orientation training}

Activities performed

http://www.sei.cmu.edu/cmm/docs/q-and-a.1.html (5 of 9) [3/16/2004 4:41:48 PM]

Software CMM Q&A #1

Activity 1 - {Activity performed in Key Process Area X.}
1. {Sub-practice for Activity 1, possibly affecting different groups.}

Examples of affected groups include:
- {list of affected groups}

2. {Additional sub-practices for Activity 1...}
3. {Software work products, as appropriate} are placed under configuration
management.

Refer to the Software Configuration Management key process area.

Activity 2 - {Activity performed in Key Process Area X} according to a documented
procedure.
This procedure typically specifies that:
1. {Sub-practices for Activity 2, possibly with cross reference(s) to key practice(s) in
another key process area.}

Refer to Activity N of the {Z} key process area for practices {related to Activity 2.1}.

2. {Additional sub-practices for Activity 2...}
3. {Software work products} undergo peer review {according to appropriate criteria}.

Refer to the Peer Reviews key process area.

4. {Software work products, as appropriate} are managed and controlled.

"Managed and controlled" implies that the version of the work product in use at a given
time (past or present) is known (i.e., version control), and changes are incorporated in a
controlled manner (i.e., change control).
If a greater degree of formality than is implied by "managed and controlled" is desired,
the work product can be placed under the full discipline of configuration management,
as is described in the Software Configuration Management key process area.

Measurement and analysis

Measurement 1 - Measurements are made and used to determine the status of the
activities for {X}.

Examples of measurements include:
- {measurement examples}

Verifying implementation

Verification 1 - The activities for {X} are reviewed with senior management on a
periodic basis.
1. {Sub-practices for Verification 1...}

Verification 2 - The activities for {X} are reviewed with the project manager on both a
periodic and event-driven basis.

http://www.sei.cmu.edu/cmm/docs/q-and-a.1.html (6 of 9) [3/16/2004 4:41:48 PM]

Software CMM Q&A #1

1. {Sub-practices for Verification 1...}

Verification 3 - The software quality assurance group reviews and/or audits the
activities and work products for {X} and reports the results.

Refer to the Software Quality Assurance key process area.

At a minimum, these reviews and/or audits verify that:
1. {Sub-practices for Verification 3...}

Documentation for small/prototyping projects

The following thoughts are my personal opinions on interpreting the CMM for small or
prototyping projects. The key practices of the CMM are written from the perspective of
large, government contracting organizations, but the CMM has been successfully
applied across a broad range of environments.

It is fair to say that the practices set expectations for what the normative behavior of
organizations will be in satisfying the CMM. I think it is also fair to say that the practices
apply to small or prototyping projects, but the expectations for degree of documentation
and formality may be quite different from those for a large, government contracting
organization. There is a chapter in the TR-25 on "Interpreting the CMM," and this note
is basically a restatement of some of that material with examples.

The CMM has a strong emphasis on documenting your process and implementing the
process as documented -- say what you do; do what you say. It is our expectation that
even small projects or prototyping projects can be expected to satisfy the goals of each
key process area that is applicable -- including the documentation requirements.
Understanding the appropriate degree of documentation that is critical to consistent,
high-quality performance of the process is essential to defining usable processes
regardless of the application domain, environment, size, or any of the other drivers that
influence interpretation of the CMM.

Some of the issues that must be considered in judging a specific implementation
include:

● Mapping of roles. For example, in a small project, the project manager/task
leader may fulfill the functions of SCM manager, SCM group, SCCB, project
manager, project software manager, software manager, estimator, system
engineering group, customer liaison, etc. Is the functionality in the CMM
addressed? Who is addressing it?

● Understanding "documented." Documentation may be via SDFs, e-mail, notes,
memos, a formal plan/standard/procedure, etc. Documents may be on-line or on
paper.

● Formality of the process. For example, an SCCB is an appropriate control
mechanism for large projects, but for small projects the approval and review of
changes may be the responsibility of the project manager/task leader.

● Granularity, packaging, and frequency. For example, software plans may be
packaged in several volumes for a large project; for a small project, plans and
requirements may all be gathered together in a single loose-leaf binder.
Phrases such as "periodic" and "as appropriate" need to be defined or
interpreted to suit the needs of a particular environment.

The challenge in using the CMM intelligently for small/prototyping projects is making a

http://www.sei.cmu.edu/cmm/docs/q-and-a.1.html (7 of 9) [3/16/2004 4:41:48 PM]

Software CMM Q&A #1

reasonable professional judgement as to the sufficiency of a process. Adding to the
challenge is the fact that the criteria bounding these judgements are continuous. How
small is "small"? How informal is appropriate for prototyping?

Small projects

What is a small project? Some organizations would say 10-20 people; others 2-3. The
general concepts of the CMM apply even at the level of the individual professional, as
Watts Humphrey is currently demonstrating with his work on the Personal Software
Process.

Consider an organization, perhaps with a thousand people, but projects are small:
typically 3-5 people for 1-3 months. Can such an organization satisfy the project
management KPAs at Level 2 without incurring excessive overhead?

From a project perspective, a two-week slip is not a big deal. If the project was
scheduled to last a month, a two-week slip is still not a major risk. If there are a
thousand projects, and each slips its schedule by 50%, that is a big deal for the
organization as a whole. It may be appropriate to interpret "project" and "organization"
in the CMM as synonyms for this organization and treat the 3-5 person efforts as
"tasks" that need to be collectively planned and tracked. Tracking will be almost binary --
is it planned? is it complete? -- since the entire development cycle is near the
granularity of a monthly status reporting cycle. The plan for each project/task will be on
the order of a one-page task order (which will include the written requirements for what
is to be built).

For the small organization, say less than 20 people, a more-of-the-same argument
would hold. The process focus might be the responsibility of the president of the
company. There might not be an independent SQA group; individuals from other
"projects" might act in the (objective) SQA role as part of a peer review system (this
could also be true for large organizations that have a "TQM culture"). Policies,
standards, and procedures might be combined into a single (short) document, perhaps
in a loose-leaf binder.

Prototyping projects

Consider a prototyping project. The entire project may last six months and go through
four or five prototyping cycles. The customer does not know exactly what is needed --
that's why they're prototyping. The requirements for the first prototype will be
documented by the customer, but neither the requirements nor the plan will be very
elaborate. Even the ending criteria may be vaguely stated as "whenever the customer
doesn't want to prototype any more." The requirements and plans for successive
prototypes may be embedded in the code/design/action items from the last prototype,
but they should identify when further refinement of the plan will be performed.

This is certainly not as formally stated as the practices in the CMM would indicate, yet it
could be a well-controlled and effective process for managing a prototyping project.

There is a distinction between prototyping and hacking. Hacking has become a
pejorative term, denoting an undisciplined, ad hoc approach to software. Prototyping, if
properly implemented, is not hacking. There is a range of approaches to developing
software: prototyping, rapid prototyping, evolutionary development, incremental
delivery, full-scale development, etc. Each has different expectations for degree of rigor

http://www.sei.cmu.edu/cmm/docs/q-and-a.1.html (8 of 9) [3/16/2004 4:41:48 PM]

Software CMM Q&A #1

and formality that are appropriate in its environment; each can be misapplied in the
wrong environment; each can fully satisfy the CMM in an effective manner if intelligently
implemented.

Interpreting the CMM

The CMM is aimed at solving systematic problems in the way we manage software
projects. Perhaps the best way to tell if a process implementation is sufficient is
whether or not you're having significant problems related to the process. If you and your
customer disagree over what a product should be doing, you may want to look at
Requirements Management; if you're having schedule and cost problems, you may
want to think about Software Project Planning and Software Project Tracking &
Oversight; if you've lost the product, you might want to consider Software Configuration
Management.

If you don't have any project management problems, maybe you're at Level 2 (or
higher) -- although I'd make the caveat that managers should ask the people doing the
work whether there are problems before concluding there aren't any.

The CMM is not a process description or a process model. It is a description of key
process attributes that may be realized in many different ways. Unfortunately, a side
effect of making the CMM flexible enough to apply across a broad range of application
domains, environments, sizes, etc., is that we create ambiguity that needs to be
appropriately interpreted in each context in which the CMM is applied.

[1] I characterize tailoring as involving multiple projects and interpreting as involving a
single project, although the documentation might be identical in both cases, based on
the use.

Return to top of the page

Return to main page

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2004 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/cmm/docs/q-and-a.1.html
Last Modified: 21 July 2003

http://www.sei.cmu.edu/cmm/docs/q-and-a.1.html (9 of 9) [3/16/2004 4:41:48 PM]

mailto:mcp@sei.cmu.edu?Subject=q-and-a.1.html
http://www.sei.cmu.edu/about/disclaimer.html

Questions and Answers on the CMM

Mark C. Paulk
Issue #1

5 April 1994

I am frequently asked questions on how to interpret the CMM in various
contexts. The following “newsletter” may be of general use. It reproduces the
5 April 1994 mailing to the CMM Correspondence Group. I have to caveat
these answers by saying that they represent my opinion and do not represent
official SEI positions. They have typically not been internally reviewed, but
they do represent a well-informed opinion on what the CMM means.

You are welcome to ask questions on the CMM. I do not guarantee quick
answers, although I’ll try to get back to you as soon as possible. Sometimes
that’s the same day I receive a question, sometimes it may be a month,
depending on my travel schedule and work load. I prefer to receive questions
in writing by e-mail. I will sanitize both question and answer before
distribution in this newsletter.

Mark Paulk
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
Fax #: (412) 268-5758
Internet: mcp@sei.cmu.edu

The following “questions and answers” are based on discussions held at the
CMM workshop on tailoring the CMM held 29-30 March 1994.

Tailoring the CMM

Tailoring the CMM to the specific needs of an organization or class of project
is a hot topic right now. These are some of my personal opinions on
tailoring; they may or may not be incorporated into the planned SEI report on
tailoring guidelines.

As a concept, tailoring lies somewhere between interpreting the CMM and
implementing a software process improvement program. I would define
interpretation as “a statement, preferably documented, of how an
implementation(s) of a process relates to the CMM.” I would define tailoring
as “a documented description of how a process should be implemented across

CMM Q&A Issue #1 1

multiple1 projects at about the same level of abstraction as the CMM (i.e.,
what, but shading into how), with a statement of the relationship to the
CMM’s concepts and practices.” A tailored CMM might have to be interpreted
when appraising a specific implementation, although the interpretation
should be minimal.

The difference between tailoring and interpreting is based on the need for
reliability and consistency. Interpretation implies judgement, which may
lead to some degree of unreliability and inconsistency. Tailoring may be cost
effective if an organization is concerned about SCEs or if the tailoring is a first
step in process definition and improvement that will be applied across
projects.

Although the key practices and subpractices describe the normative behavior
of large, government contracting organizations, I consider application
domain and environment the dominant factors in determining the degree of
formality and rigor that is needed by a project. For example, a small
commercial project developing life-critical medical software would be
expected to follow a formal, rigorous process.

Nonetheless, an organization does not need to implement every practice
exactly as stated to fully satisfy a key process area and to achieve its goals. For
example, an organization using the Cleanroom approach would not
implement some of the testing practices in Software Product Engineering as
described.

One reason that tailoring may be needed (at least for consistency and
reliability of appraisals) is that a practice or process which is adequate to satisfy
the CMM in one context may be inadequate in another context based on the
degree of formality and rigor that is needed. For example, I would not
normally expect small project SCM to require the same degree of
documentation and formality as large project SCM, although I would expect
even small projects to achieve the goals of that KPA.

Can key practices be modified? This decomposes into three cases that I can
think of:

• Mapping of roles, concepts, and terminology. The terminology in the
CMM is hopefully reasonably clear, but the different organizational
structures, cultures, process implementations, technologies,
methodologies, etc., mean that it is necessary to map the roles in the
CMM to job titles/functional responsibilities in the organization, to
map process concepts to the specific methodologies and technologies of

1 I characterize tailoring as involving multiple projects and interpreting as
involving a single project, although the documentation might be identical in
both cases, based on the use.

CMM Q&A Issue #1 2

the implemented process(es), and to map key process areas to life cycle
activities. Recasting the CMM in the language of an organization can
significantly help communication and consistency.

• Alternate implementations. For example, an organization that does
Cleanroom has an alternate implementation for some of the testing
practices in Software Product Engineering. Whether one views this as
an interpretation or tailoring issue, we certainly want to allow for these
kinds of legitimate variations, so long as we understand the
relationship between the implemented process and the practices in the
CMM.

• Specific implementations. For example, requiring the use of COCOMO
in planning or OO methods in development. This implies a more
specific requirement and might be useful in guiding process definition
and improvement. This tailoring would, however, be more specific
than the CMM and a violation of the tailoring would not necessarily
imply that the equivalent practices in the CMM were not satisfactorily
addressed.

The first case is very useful in interpreting the CMM. The last two cases edge
into defining the organization’s standard software process but may still be in
the gray area between tailoring and defining.

A version of the CMM with modified practices could be legitimately claimed
as “a tailored version of the CMM.” This kind of tailoring was the focus of
the CMM Tailoring Workshop held on 29-30 March 1994. There are more
extensive adaptations of the CMM that might be desirable, however, and
these were raised as issues at the workshop.

Can key process areas be modified? For example, an organization might want
to specify inspections for Peer Reviews. Tailoring and process definition have
become almost indistinguishable at this point. So long as the modification is
more specific than the KPA, satisfying the more specific requirement would
satisfy the KPA. Not satisfying a more specific requirement, however, would
not necessarily imply that the KPA was not satisfied (although it would
indicate that the defined process was not implemented and this is an SQA
problem).

I am unable to identify off-hand a reasonable meaning for “less specific
variation of a KPA,” although I can for a key practice (e.g., for small projects).
For example, someone might want to do “Reviews” rather than Peer Reviews
and implement them via PDR/CDR kinds of formal review. If such a
tailoring was created, it would mean that the CMM KPA (Peer Reviews for
the example) was not investigated, and no maturity level could be assigned
that depended on the “less specific” KPA.

CMM Q&A Issue #1 3

Modifying key process areas is essentially just a variation of modifying key
practices, and I would consider this a tailored version of the CMM, with the
caveats on scoring already mentioned. The essential point is a clear
understanding of the relationship between the KPA in the CMM (and its
goals) and the tailored KPA.

Can key process areas be deleted from the CMM? That may be a legitimate
business decision, but it should imply that those KPAs are explicitly identified
as Not Investigated, and no maturity level can be assigned which has
“deleted” KPAs at or below it.

I would consider a tailoring that deleted KPAs a legitimate one, but care
would have to be taken in reporting the score. It is legitimate to claim that an
organization is Level 2 that does not do Software Subcontract Management
(i.e., it was scored as Not Applicable), but it would not be legitimate to claim
an organization was Level 2 if Software Subcontract Management was
tailored out of the CMM. This may seem a subtle distinction, but it is
necessary to maintain integrity and comparability of appraisal results. Any
KPA that is “not investigated” (as distinct from “not applicable”) limits the
SEI maturity level that can be assigned and should be noted in briefings and
reports.

Can key process areas be added to the CMM? For example, an organization
might identify a need for KPAs on testing and system engineering. This
could be a legitimate approach to process improvement (or contract
monitoring) to address specific business or project needs, but there are a
couple of provisos:

• The new KPAs should be documented, preferably using the template
used in the CMM, and available to everyone who needs them.

• The new KPAs should not be assigned to maturity levels, since they are
not part of the maturity framework (e.g., no Level 2 KPA on testing).

Adding KPAs is a particular concern for software capability evaluations.
Some contractors are concerned that such tailorings prevent a “level playing
field” and that the tailoring will be aimed at selecting a particular contractor.
The SEI, however, has no control over how acquisition agencies choose to
implement SCEs, although we provide guidelines, training, and
recommendations to help acquisition agencies implement SCEs consistently.
(Also note that industry can and does evaluate software contractors, and there
are similar concerns in that environment.)

The CMM provides a publicly available set of criteria for appraising the
software process and guiding an improvement effort. Any tailorings of the
CMM that an organization uses should be appropriately documented and
communicated to all concerned parties in a timely manner. Any tailoring of

CMM Q&A Issue #1 4

the CMM should not be advertised as “the” CMM, but rather as “the tailoring
of the CMM for XYZ.”

The relevant point, as Charlie Weber has pointed out, is whether you are
tailoring a top-level key practice or a subpractice. To tailor a goal, you should
sweat blood (and then be conservative in mapping the relationship to “the”
CMM). To tailor a key practice, you should just sweat. To tailor a subpractice,
your conscience should hardly bother you.

The CMM is not exhaustive, and it is not a silver bullet. Tailoring the CMM
may be appropriate and desirable to address the business needs of an
organization. While recognizing that need, we also need to maintain the
integrity of the CMM as an asset to the software community.

The key process area template

A template was generally used to express the key process areas using a
consistent structure and phrasing. This key process area template, with the
“standard” wording used in the various key process areas, follows.

I hope this template will help people understand the CMM and its structure
better and help them to use the CMM more efficiently.

There are cases where the practices deliberately deviate from this template.
For example, in Verifying Implementation for SQA, the SQA group does not
audit itself.

Please note that the numbering of the key practices is not significant, since
there are exceptions and additions to the template.

Also note that:
• goals and common features are delimited by underlined headers, e.g.,

Goals and Commitment to Perform
• key practices are labeled with a noun representing their common

feature and a number, e.g., Commitment 1 and Ability 2
• key practices are in bold type, e.g.,

Ability 1 A group that is responsible for <X> exists.
• subpractices follow their associated key practice in smaller type and are

labeled with a number, e.g.,
1. <A subpractice for Activity 3.>

• practices may be followed by boxed text containing elaboration, cross
references, or examples

CMM Q&A Issue #1 5

<Key Process Area X>

The purpose of <Key Process Area X> is <statement>.

<Key Process Area X> involves <summary>.

<Additional elaboration on Key Process Area X as appropriate.>

Goals

Goal 1 <Process summary statement as goal.>

Goal 2 <Process summary statement as goal...>

Commitment to perform

Commitment 1 The project follows a written organizational policy for
<X>.

– or –

The organization follows a written policy for <X>.

This policy typically specifies that:

1. <Subpractices for Commitment 1...>

Ability to perform

Ability 1 A group that is responsible for <X> exists.

1. <Subpractices for Ability 1...>

CMM Q&A Issue #1 6

Ability 2 Adequate resources and funding are provided for <X>.

1. <Subpractices for Ability 2...>

2. Tools to support the activities for <X> are made available.

Examples of <X> tools include:

- <examples of tools>

Ability 3 <Roles> are trained <to perform their X activities>.

– or –

<Roles> receive required training <to perform their X
activities>.

Examples of training include:

- <examples of training>

Ability 4 <Roles> receive orientation in <X>.

Examples of orientation include:

- <examples of orientation training>

CMM Q&A Issue #1 7

Activities performed

Activity 1 <Activity performed in Key Process Area X.>

1. <Subpractice for Activity 1, possibly affecting different groups.>

Examples of affected groups include:

- <list of affected groups>

2. <Additional subpractices for Activity 1...>

3. <Software work products, as appropriate> are placed under
configuration management.

Refer to the Software Configuration Management key process
area.

Activity 2 <Activity performed in Key Process Area X> according to a
documented procedure.

This procedure typically specifies that:

1. <Subpractices for Activity 2, possibly with cross reference(s) to key
practice(s) in another key process area.>

Refer to Activity N of the <Z> key process area for practices
<related to Activity 2.1>.

2. <Additional subpractices for Activity 2...>

CMM Q&A Issue #1 8

3. <Software work products> undergo peer review <according to
appropriate criteria>.

Refer to the Peer Reviews key process area.

4. <Software work products, as appropriate> are managed and
controlled.

"Managed and controlled" implies that the version of the work
product in use at a given time (past or present) is known (i.e.,
version control), and changes are incorporated in a controlled
manner (i.e., change control).

If a greater degree of formality than is implied by "managed
and controlled" is desired, the work product can be placed under
the full discipline of configuration management, as is described
in the Software Configuration Management key process area.

Measurement and analysis

Measurement 1 Measurements are made and used to determine the status
of the activities for <X>.

Examples of measurements include:

- <measurement examples>

Verifying implementation

Verification 1 The activities for <X> are reviewed with senior
management on a periodic basis.

1. <Subpractices for Verification 1...>

CMM Q&A Issue #1 9

Verification 2 The activities for <X> are reviewed with the project
manager on both a periodic and event-driven basis.

1. <Subpractices for Verification 1...>

Verification 3 The software quality assurance group reviews and/or
audits the activities and work products for <X> and reports
the results.

Refer to the Software Quality Assurance key process area.

At a minimum, these reviews and/or audits verify that:

1. <Subpractices for Verification 3...>

Documentation for small/prototyping projects

The following thoughts are my personal opinions on interpreting the CMM
for small or prototyping projects. The key practices of the CMM are written
from the perspective of large, government contracting organizations, but the
CMM has been successfully applied across a broad range of environments.

It is fair to say that the practices set expectations for what the normative
behavior of organizations will be in satisfying the CMM. I think it is also fair
to say that the practices apply to small or prototyping projects, but the
expectations for degree of documentation and formality may be quite different
from those for a large, government contracting organization. There is a
chapter in the TR-25 on “Interpreting the CMM,” and this note is basically a
restatement of some of that material with examples.

The CMM has a strong emphasis on documenting your process and
implementing the process as documented – say what you do; do what you say.
It is our expectation that even small projects or prototyping projects can be
expected to satisfy the goals of each key process area that is applicable –
including the documentation requirements. Understanding the appropriate
degree of documentation that is critical to consistent, high-quality
performance of the process is essential to defining usable processes regardless
of the application domain, environment, size, or any of the other drivers that
influence interpretation of the CMM.

CMM Q&A Issue #1 10

Some of the issues that must be considered in judging a specific
implementation include:

• Mapping of roles. For example, in a small project, the project
manager/task leader may fulfill the functions of SCM manager, SCM
group, SCCB, project manager, project software manager, software
manager, estimater, system engineering group, customer liaison, etc. Is
the functionality in the CMM addressed? Who is addressing it?

• Understanding “documented.” Documentation may be via SDFs, e-
mail, notes, memos, a formal plan/standard/procedure, etc.
Documents may be on-line or on paper.

• Formality of the process. For example, an SCCB is an appropriate
control mechanism for large projects, but for small projects the
approval and review of changes may be the responsibility of the project
manager/task leader.

• Granularity, packaging, and frequency. For example, software plans
may be packaged in several volumes for a large project; for a small
project, plans and requirements may all be gathered together in a single
loose-leaf binder. Phrases such as “periodic” and “as appropriate” need
to be defined or interpreted to suit the needs of a particular
environment.

The challenge in using the CMM intelligently for small/prototyping projects
is making a reasonable professional judgement as to the sufficiency of a
process. Adding to the challenge is the fact that the criteria bounding these
judgements are continuous. How small is “small”? How informal is
appropriate for prototyping?

Small projects

What is a small project? Some organizations would say 10-20 people; others
2-3. The general concepts of the CMM apply even at the level of the
individual professional, as Watts Humphrey is currently demonstrating with
his work on the Personal Software Process.

Consider an organization, perhaps with a thousand people, but projects are
small: typically 3-5 people for 1-3 months. Can such an organization satisfy
the project management KPAs at Level 2 without incurring excessive
overhead?

From a project perspective, a two-week slip is not a big deal. If the project was
scheduled to last a month, a two-week slip is still not a major risk. If there are
a thousand projects, and each slips its schedule by 50%, that is a big deal for
the organization as a whole. It may be appropriate to interpret “project” and
“organization” in the CMM as synonyms for this organization and treat the 3-
5 person efforts as “tasks” that need to be collectively planned and tracked.

CMM Q&A Issue #1 11

Tracking will be almost binary – is it planned? is it complete? – since the
entire development cycle is near the granularity of a monthly status reporting
cycle. The plan for each project/task will be on the order of a one-page task
order (which will include the written requirements for what is to be built).

For the small organization, say less than 20 people, a more-of-the-same
argument would hold. The process focus might be the responsibility of the
president of the company. There might not be an independent SQA group;
individuals from other “projects” might act in the (objective) SQA role as part
of a peer review system (this could also be true for large organizations that
have a “TQM culture”). Policies, standards, and procedures might be
combined into a single (short) document, perhaps in a loose-leaf binder.

Prototyping projects

Consider a prototyping project. The entire project may last six months and go
through four or five prototyping cycles. The customer does not know exactly
what is needed – that’s why they’re prototyping. The requirements for the
first prototype will be documented by the customer, but neither the
requirements nor the plan will be very elaborate. Even the ending criteria
may be vaguely stated as “whenever the customer doesn’t want to prototype
any more.” The requirements and plans for successive prototypes may be
embedded in the code/design/action items from the last prototype, but they
should identify when further refinement of the plan will be performed.

This is certainly not as formally stated as the practices in the CMM would
indicate, yet it could be a well-controlled and effective process for managing a
prototyping project.

There is a distinction between prototyping and hacking. Hacking has become
a pejorative term, denoting an undisciplined, ad hoc approach to software.
Prototyping, if properly implemented, is not hacking. There is a range of
approaches to developing software: prototyping, rapid prototyping,
evolutionary development, incremental delivery, full-scale development, etc.
Each has different expectations for degree of rigor and formality that are
appropriate in its environment; each can be misapplied in the wrong
environment; each can fully satisfy the CMM in an effective manner if
intelligently implemented.

Interpreting the CMM

The CMM is aimed at solving systematic problems in the way we manage
software projects. Perhaps the best way to tell if a process implementation is
sufficient is whether or not you’re having significant problems related to the
process. If you and your customer disagree over what a product should be
doing, you may want to look at Requirements Management; if you’re having

CMM Q&A Issue #1 12

schedule and cost problems, you may want to think about Software Project
Planning and Software Project Tracking & Oversight; if you’ve lost the
product, you might want to consider Software Configuration Management.

If you don’t have any project management problems, maybe you’re at Level 2
(or higher) – although I’d make the caveat that managers should ask the
people doing the work whether there are problems before concluding there
aren’t any.

The CMM is not a process description or a process model. It is a description of
key process attributes that may be realized in many different ways.
Unfortunately, a side effect of making the CMM flexible enough to apply
across a broad range of application domains, environments, sizes, etc., is that
we create ambiguity that needs to be appropriately interpreted in each context
in which the CMM is applied.

CMM Q&A Issue #1 13

Software CMM Q&A #2

Welcome

Capability
Maturity
Modeling

Team &
Personal
Software
Process

IDEAL Model

Risk
Management

Software
Engineering
Measurement &
Analysis (SEMA)

Software
Engineering
Information
Repository
(SEIR)

Software
Process
Improvement
Networks
(SPINs)

Appraiser
Program

Acronyms

SEI Initiatives

Conferences

Education &
Training

Questions and Answers about the Software Capability
Maturity Model® (SW-CMM® (Q&A #2)

Mark C. Paulk
Issue #2 - 2 August 1994

I am frequently asked questions on how to interpret the CMM in various contexts. The
following "newsletter" may be of general use. It reproduces the 2 August 1994 mailing
to the CMM Correspondence Group. I have to caveat these answers by saying that
they represent my opinion and do not represent official SEI positions. They have
typically not been internally reviewed, but they do represent a well-informed opinion on
what the CMM means.

General Questions and Answers on the CMM

Q. In our thinking

● A policy specifies what will happen.
● A procedure specifies how it will happen.
● A standard specifies the quality of what will happen.

As you developed the KPA of the CMM document were there rules such as these for
interpretation of these terms:

A. Our general guidelines were similar:

● policy sets the cultural expectations of the organization
- "that's how we do things around here"

● procedure is process-oriented (how)
- a set of steps for doing something

● standard is product-oriented (both functional and quality)
- what the resulting work product will look like

Requirements Management

Q. In the CMM, each KPA has a measurements and analysis section. However, unlike
the other KPAs, under Requirements Management, there does not appear to be an
example measurement of "work completed, effort expended in Requirements
Management compared to the plan." Understanding that all of KPA measurements are
only "examples" was this merely an omission, or is there some other reason why
requirements costs are not relevant?

A. It was merely an omission. A complicating factor may be that much of the work in

http://www.sei.cmu.edu/cmm/docs/q-and-a.2.html (1 of 12) [3/16/2004 4:42:03 PM]

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/cmm/docs/q-and-a.2.html?owner=sshrum
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/sei-home.html
http://www.sei.cmu.edu/sei-home.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/tsp/
http://www.sei.cmu.edu/tsp/
http://www.sei.cmu.edu/ideal/ideal.html
http://www.sei.cmu.edu/ideal/ideal.html
http://www.sei.cmu.edu/programs/sepm/risk/index.html
http://www.sei.cmu.edu/programs/sepm/risk/index.html
http://www.sei.cmu.edu/sema/welcome.html
http://www.sei.cmu.edu/sema/welcome.html
http://seir.sei.cmu.edu/
http://seir.sei.cmu.edu/
http://www.sei.cmu.edu/collaborating/spins/spins.html
http://www.sei.cmu.edu/collaborating/spins/spins.html
http://www.sei.cmu.edu/managing/app.directory.html
http://www.sei.cmu.edu/managing/app.directory.html
http://www.sei.cmu.edu/about/acronyms/help.acronyms.html
http://www.sei.cmu.edu/about/acronyms/help.acronyms.html
http://www.sei.cmu.edu/about/overview/sei/initiatives.html
http://www.sei.cmu.edu/about/overview/sei/initiatives.html
http://www.sei.cmu.edu/products/events/events.html
http://www.sei.cmu.edu/products/events/events.html
http://www.sei.cmu.edu/products/courses/courses.html
http://www.sei.cmu.edu/products/courses/courses.html
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html

Software CMM Q&A #2

RM may be done in proposal phase and early in the life cycle. Depending on your
project management process, you may only have "draft plans" in place early in the life
cycle, so you have some complications in tracking against the plan. This is a particular
case, however, of tracking in a rework/revised plan environment. Also, much of this
work may be done by Systems Engineering, so the SDP part may (or may not) be
separately managed from the Project Management Plan part - depending on the degree
of concurrency/integration between your engineering groups.

Q. As I understand, the CMM is directed to mission-critical, development efforts. For
(new) development projects, one can determine a baseline of software requirements. In
measuring the "change activity" for allocated requirements, this would suggest to me
evaluating the volatility of requirements by measuring the number of changes to the
baseline. In your experience, is there value to comparing the number of changes to the
number of requirements in the baseline? This could be expressed as a % of change, as
opposed to a count only.

A. In a development environment, yes, because it helps you understand the relationship
of volatility to eventual delivery. For maintenance, you may be more interested in trends
as related to block updates.

Q. In our environment, most of our work is in the arena of MAINTENANCE, and as such
we do not have the baseline requirements for the original production software on legacy
systems. What we could do is as follows: Using the medium of the System Service
Requests (SSRs) (a form to report problems, request enhancements to production
systems, etc.), we could define, itemize and enumerate the requirements related to
each SSR, thereby determining a maintenance baseline. If changes ensue during the
course of working to satisfy these requirements, then one could monitor change to this
baseline. (Note that (1) costs are tracked via estimates and actuals to SSRs and (2)
time cards have the capability of tracking time spent in Requirements Management
activities.) Over time, one could (1) collect costs to manage requirements and (2)
determine % of requirements changed over the entire SSR implementation and/or the
phases/sub-phases. Both of these would be indicators of how much time to estimate for
requirements management relative to number of requirements and how much time
should be expected to accommodate changes to requirements.

A. I would assume that you do block updates and have multiple releases based on
different maintenance baselines per update. SSRs would be tracked to a particular
baseline ... but it looks like you want/need to track changes to SSR changes, so your
SSRs may be the equivalent of a functional release (operational increment, etc.). In that
case, I'd treat the SSR as a baseline and measure volatility in terms of change requests
to that baseline.

Q. What experience if any, have you had with enterprises dealing with maintenance
software vs. development software, with regard to requirements management?

A. Look at some of the experience papers coming out of the IBM Houston (now Loral
Space Information Systems) Space Shuttle software project. They're in an environment
that would seem to be somewhat similar to what you're dealing with. Also telecom
companies have a similar set of problems and have published on their update/release
process. Check some of the recent international conference proceedings for up-to-date
citations.

Q. The first question arose out of an assessment of a set of maintenance projects
involving legacy systems. The legacy systems are poorly documented in general, and
lack documentation of the original requirements, in particular. The organization handles

http://www.sei.cmu.edu/cmm/docs/q-and-a.2.html (2 of 12) [3/16/2004 4:42:03 PM]

Software CMM Q&A #2

software problem reports (SPRs) and baseline change requests (BCRs), which are
documented explicitly to ensure clarity, completeness, feasibility and testability. Testing
of the changes is made somewhat awkward because testers lack documentation of
requirements for the entire system (as opposed to just the specific SPRs and BCRs,
whose changes they can verify directly). The question is whether the organization
meets the spirit and letter of the Requirements Management KPA if they do not back-
document all the system's requirements (an activity that might need several man-years'
effort to complete). Does the SEI have an official position on this situation? Your
opinion?

A. I can't give you an "official" position, but I'm happy to give you my opinion.

Requiring extensive back documentation would be unreasonable, although it might be
desirable to maintain an architectural view of what's going on in the system. In this
environment there would seem to be two critical needs:

● a good regression test suite, to make sure you aren't accidentally blowing away
functionality that was there, but which may be undocumented (this may just be
an add-on to the undocumented requirements problem, but it's certainly another
aspect to worry about), although I suppose you could use the "if it goes away
and nobody complains, we really didn't need it anyway" argument.

● good documentation and tracking of changes and change requests/problem
reports, which you seem to have

The second need would address the spirit of RM, although I think you'd agree that
there's a noticeable vulnerability here. It's characteristic of many legacy systems,
however, and we're just going to have to live with them (at least until the year 2000
when most of them will turn belly up on two-digit years).

I would classify this KPA as satisfactorily addressed, but document a finding that there
is a risk here that needs to be tracked over time. If the legacy system is to be kept, and
it's critical, it might be worthwhile to consider re-engineering it.

Software Project Planning

Q. A question came up concerning the interpretation of the Project Planning KPA
practice that says "Size, cost, and schedule estimates must have a BASIS IN
REALITY" (in SEI training materials). When contractors said they use informal personal
experience that is undocumented or tracked, many team members said that their
estimates satisfied this criteria since developers were basing their estimates on their
personal experience. I however said that this is not sufficient for a Defined or
Repeatable process. I was looking for historical logs or data bases, estimation
procedures, and a formal comparison of actuals vs. planned to improve the estimation
process. What does "basis in reality" mean?

A. PP.AC.9.3 says "historical data are used where available." PP.AC.9.4 and 9.5 go on
to talk about documenting assumptions and estimates. There is no explicit requirement
that the historical data be documented initially, and initially I would doubt that it would
be. One purpose of documenting, however, is to institutionalize corporate knowledge. If
the organization is documenting and plans to use this historical data more formally in
the future, I would have no concerns. If they aren't, then I would be concerned they're
looking at the letter of the law rather than the spirit. Personal experience is a beginning
of "a realistic basis" and the major concern of realism could be (at least partially)
addressed by estimating procedures that prevented/controlled a proposal manager who

http://www.sei.cmu.edu/cmm/docs/q-and-a.2.html (3 of 12) [3/16/2004 4:42:03 PM]

Software CMM Q&A #2

said "we have to cut this by 25% to win the contract."

In a similar vein, Measurement & Analysis is the beginning of improvement for the
planning process, but note that we do not close the loop (in the PDCA cycle sense,
where this is the Check aspect) at Level 2. Improvement of the planning process is not
required at Level 2, although we do expect to see the infrastructure being put into place
(i.e., M&A).

Level 3 is supposed to be using the organization's software process database, which
contains this kind of historical data, so I infer the question applies only to the Level 2
instantiation.

Q. Humphrey's Book: To clarify the above criteria concerning "basis of reality" I wanted
the team to refer to Humphrey's book for clarification. But some team members said
that Humphrey's book is NOT a reference book for appraisal teams and should not be
used to clarify the intent of some of the bullets presented in the training . Should teams
refer to Humphrey's book for clarification of KPAs?

A. I would infer that this is a very audit oriented team. To use the CMM correctly, one
must apply professional judgement. (As many of the team members seemed willing to
do in the case of personal experience.) Any tool, whether it's Humphrey's book or
someone else's, that helps the team understand the technical and management issues
underlying a point of discussion is of value. No book, and I include the CMM here,
should be used to replace thinking and consideration on the part of the team.
Appropriate implementations of the CMM practices must be judged in a thoughtful and
professional way, and the team should come to consensus on issues. If there are
strong minority opinions on the team, I would expect those to come out as risks in the
teams report, even though the "score" might be satisfactory in that area (I believe you
should be able to have "fully satisfied with findings" for any KPA).

The issue that's being struggled with is whether this is a "good enough" practice. I
believe the CMM provides significant guidance for making these kinds of judgement,
but there are times when flexibility/ambiguity clouds an issue. Do not remove the
possibility of reporting a concern, even if the conservative decision is that the practice is
okay.

There's another underlying issue here, which is the training as it relates to the CMM. My
perhaps biased judgement is that the CMM overrides any particular set of training
materials, which of necessity has to summarize and abstract the concerns of the CMM.
In its turn, the CMM summarizes and abstracts the software engineering and
management practices that a team must judge - professionally - when doing an
assessment or evaluation. The CMM is not, and cannot be, an absolute objective set of
criteria that applies equally in all environments.

Software Quality Assurance

Q. I am working to tailor the CMM for small-medium IS organizations. The team has
agreed that the CMM, with [minimal] tailoring of terminology, does apply to IS
organizations. One area of concern though is Software Quality Assurance. I think
everyone agrees with the intent behind the SQA KPA, but there is an issue with the
"objectivity" of the SQA group. [It is understood that there does not have to be a
dedicated "group" of people to do these activities.] IS projects/organizations are
typically small (some as small as 1 or 2 people, for short durations [less than 3 weeks]).
It seems that a common practice in this company's IS organizations is for project

http://www.sei.cmu.edu/cmm/docs/q-and-a.2.html (4 of 12) [3/16/2004 4:42:03 PM]

Software CMM Q&A #2

managers to perform the role of SQA. Herein lies the gotcha with the SQA KPA - the
objectivity of the SQA group. I consider this implementation of SQA to be in violation of
the intent of the KPA. Can you provide any insight into how an organization (with many
small projects) can implement SQA without incurring too much cost, but also comply
with the intent of the CMM?

A. I agree that this would be in violation of the intent. Although SQA acts as
management's window on the project, the manager may not be objective either - and is
usually juggling several priorities. That's the reason for bucking noncompliance issues
up to senior management.

I might assign someone outside the project just to run through the SQA function on a
part-time basis. Without an SQA group, the risk you run is a "you scratch my back, I'll
scratch yours" situation developing. Clearly, organization culture will be a major
determinant of whether an ad hoc SQA function is viable. I would have to know the
organization before I could determine whether this would work or not.

What seems to have been very successful in small projects is setting up a culture
where using the standards and procedures is "just the way we do things around here,"
reinforcing the culture with process definitions that are clearly stated (and trained where
possible, maybe through mentor), and using peer pressure as the enforcement
mechanism. Then an ad hoc function with part time SQA people can be pretty effective.
You can even embed it into your peer review process.

Q. Do you feel there is a lower bound to the size (head count) and duration of projects
that is outside the domain of CMM applicability?

A. In terms of the goals, no. In terms of implementation, definitely. I've worked in the
two-person project environment before, and our SQA function was definitely driven by
peer pressure - and professional pride. Ultimately that's what is need in any
organization to make Quality work.

Added comment from Judah Mogilensky:
Let me add just a couple of comments to what Mark has already said.

The implicit assumption of the CMM's SQA KPA, founded upon a great deal of
experience with Level 1 and Level 2 organizations, is that the Software Project
Manager role is more concerned with schedule and budget than with process integrity. I
might be willing to entertain an argument that, in a particular organization, the Software
Project Manager is expected to sacrifice budget and schedule considerations in favor of
process integrity, and that person is rewarded by the organization when he/she does
so, and therefore that person is "objective" about compliance with policies, procedures,
and standards. But I would be very skeptical, and I'd need a lot of convincing. And I
would not consider having the Software Project Manager do SQA acceptable under any
other circumstances.

If an organization is one in which most work is done by very small teams over very
short durations, then I would think that kind of work would be very important to the
organization. I would think that the quality of the products, and the predictability of the
projects, would be crucial to the health of the organization. And I would think that
having standard approaches to planning and tracking such short, small projects would
be a top priority, to save projects from wasting time inventing their own or not following
proven successful approaches. And therefore someone should be spending at least
part of their time verifying that these small projects are being managed according to
organizational standards, someone other than the Project Manager of each project.

http://www.sei.cmu.edu/cmm/docs/q-and-a.2.html (5 of 12) [3/16/2004 4:42:03 PM]

Software CMM Q&A #2

Someone who is in a position to raise a flag with the organization's management when
a project is not being managed according to organizational standards. This, in a
nutshell, is what the SQA KPA calls for.

As Mark knows, I am a strong advocate of the idea that organizations can evolve to the
point where process compliance is part of the culture, where failure to comply with
process is viewed as "socially aberrant behavior," and therefore is exceptionally rare or
totally non-existent. In such a case, I believe that the formal organizational mechanisms
of SQA may no longer be needed, like modern sutures that are absorbed into the skin
and disappear when no longer needed to hold an incision together. However, to make
this case, the organization needs to show both what mechanisms they have for
sustaining this culture and indoctrinating new individuals, and they need to show that
process compliance can be verified, and has been sustained at very high levels.

Small teams and short duration projects are not exemptions from the concept of
process maturity (although they can typically make effective use of simpler, lighter
forms). Watts Humphrey's next book advocates a Personal Software Process, where
beginning programming students working alone on toy problems learn to apply a
personal process from the start, and collect data, so that they can scale up their
process as their software development skills grow and project scope expands.

End of Judah's Comment

Q. Do you know what Activity 5 in Software Quality Assurance is looking for? "SQA
group audits" - Is this looking for an audit of every designated work product or could it
be a spot audit?

A. Designation can cover a variety of possibilities. If the Software Requirements Spec is
simply designated to be audited, then it should be fully audited. However, the
designation could be to spot-audit by some criteria that are specified as part of the
designation. The key point is to decide in advance what the criteria are for auditing
(random sampling, 100%, these products only, etc.) lest schedule pressures "crunch"
the SQA process.

Q. "products are evaluated." Is this an evaluation by the QA group or could it be an
evaluation by another group which the QA group verifies happens?

Either is valid. For example, evaluation could include the conduct of system testing
performed by a testing group and the SQA group verifies that the system tests were
performed according to the specified test process/criteria.

Q. "customer." There are internal and external customers, in fact every task produces a
product which is then delivered to a customer, what sort of customer is meant here?

A. Both. For example, SRS may be evaluated via peer review before handover to the
design "customers" and SQA reviews conduct of the peer review. Previous example
was handover to external customer.

Q. "designated." Can designated be something that QA and the project agree to or is
there some other criteria that should be used to determine designated.

A. Depends on what the corporate standards/procedures and project tailorings are. If
the corporate standard cannot be tailored to remove some criteria, then project cannot
prevent QA from dinging them. If project has validly tailored something, with the

http://www.sei.cmu.edu/cmm/docs/q-and-a.2.html (6 of 12) [3/16/2004 4:42:03 PM]

Software CMM Q&A #2

concurrence of the affected parties - as specified in the tailoring guidelines (I'm hitting
this from a Level 3 perspective, sorry about that), then that's what QA audits.

Short answer: if organization has criteria, use them; if not, affected parties should agree
on what designated means - early in process rather than when crunch is on.

Q. Can you or the SEI provide any clarification or guidance to CMM users for SQA
Commitment 1 on page L2-61 of 93-TR-25. We are concerned about whether the
recommendation about "performance appraisal by the management of the software
project they are reviewing." We found this recommendation in two places, but one of
them is bracketed supplementary information which can be construed as either
guidance or elaboration in this context. (The quotes follow below.) Could the appraisals
be done by a manager in the same project, but above or independent of the software
manager?

A. You're talking about specific implementations here. This concept maps up to Goal 2,
which states that "Adherence of software products and activities to the applicable
standards, procedures, and requirements is verified objectively" If an organization can
demonstrate objective verification, then independence is not required. That
demonstration is the responsibility of the organization however; an SCE team, for
example, might have a different judgement, depending on how convincing the argument
was.

To answer the questions specifically as asked, however, no, the appraisal would have
to be done outside the project UNLESS you can DEMONSTRATE that there is an
effective escalation mechanism in place that is not affected by the fact that the person
(potentially) halting the project receives raises and promotions from the individual
responsible for meeting schedules. That may not be easy to do. A close examination of
noncompliances and their disposition would be in order.

Q. Does the appraisal have to be done by a manager to whom the program manager of
the whole project (including software) reports?

A. No. Could be matrixed in from a separate QA organization, for example.

Q. Is there are general issue here that we are missing (indicated by the appearance of
the requirement in two places?

Well, you're quoting from the Overview and the Key Practices. Realizing that there
would be interpretation concerns about organizational structure, section 4.4.3 was
written to try and clarify potential concerns and issues in thinking about different
implementations. In going back and looking at it, I think I've just re-stated what it said.
Similarly for the supplementary boxes.

Q. We recognize how and why this independence is useful, so we have several
solutions in mind, but we are also concerned that if our customers (users of the CMM
and SCE) have a different interpretation, then our solution may not be satisfactory. Any
clarification you may provide will be gratefully received.

A. I infer that your real concern is whether an SCE team would be capable of judging
whether a perfectly adequate implementation was satisfactory or not. This is a larger
question than specifically SQA, although that may be a particularly sensitive point.
Hopefully, the Intro to CMM course will alleviate some of these concerns when we have
SCE teams fully trained.

http://www.sei.cmu.edu/cmm/docs/q-and-a.2.html (7 of 12) [3/16/2004 4:42:03 PM]

Software CMM Q&A #2

Q. What are the intended meanings of the terms "deviation" and "noncompliance
item/issue" as used in the CMM? It seems in the CMM these two terms do not mean
the same thing since both are reported to a project but only noncompliance items are
escalated to senior management. A brief survey here of CMM experience people came
up with 4 different sets of definitions.

A. The CMM defines

deviation - A noticeable or marked departure from the appropriate norm,
plan, standard, procedure, or variable being reviewed.

in the glossary. Noncompliance item is not defined in the glossary; it is discussed only
under the key practice QA.AC.7 on documenting and handling deviations.

Frankly, we didn't intend any subtle distinction. As QA.AC.7.2 suggests (but does not
explicitly state), a deviation may result in a noncompliance item. It's like the difference
between a failure and a problem report. Deviations occur, even if they're never
identified, documented, and tracked to closure. The noncompliance item is a form of
documented deviation (although there may be other forms as is perhaps suggested by
QA.AC.7.1).

When to officially classify a deviation as a noncompliance item is fuzzy, and I infer that's
the potential source of confusion. There is an implication that if a deviation is handled at
the project level, it doesn't (necessarily) enter the reporting chain as a noncompliance
item. We did not intend to say that this is the right way to track
deviations/noncompliance items. It MAY be useful to separate deviations into items
handled at the project level versus those that need to be escalated; it MAY be useful to
not even track deviations handled at the project level.

All that we intended in the CMM was to delimit the end points: deviations occur;
noncompliance reports are escalated to senior management as necessary. The middle
territory is left "flexible" but our terminology may have made it actively ambiguous. If so,
this may be an error in the CMM that should have a change request written for
correction in the next release of the CMM. If you feel this is something that we need to
do, please send in a CR.

H3>Organization Process Definition

Q. OPD Activity 1 - The organization's standard software process is developed and
maintained according to a documented procedure. Does this paragraph imply that the
"procedure" is a statement that indicates or acknowledges the organization's policies
and standards will be satisfied and that state-of the practice tools and methods will be
used?

A. Both of these are motherhood kinds of statements. For the first, if the policies,
procedures, and standards are inconsistent or incompatible, it seems clear that you
have a problem. For the second, we don't say anywhere in the CMM that you have to
use state-of-the-practice tools and methods - just that you use appropriate tools for
what you're doing. There may be reasons for not using state-of-the-practice tools (some
reports indicate most organizations don't use structured programming yet, which is 70s
vintage), but the efficiency of your process in a competitive situation may be so low that
you can't survive.

http://www.sei.cmu.edu/cmm/docs/q-and-a.2.html (8 of 12) [3/16/2004 4:42:03 PM]

Software CMM Q&A #2

Q. OPD Activity 2 - The organization's standard software process is documented
according to established standards. Do established standards simply specify that
elements are decomposed "to the granularity needed to understand and describe the
process", Do established standards simply state that "Each process element is
described and addresses: . . .", and that "relationships of the process elements are
described and address: . . . "? Or do established standards provide how to document
the process.

These standards would tell you, for example, what a process element looks like.
Compare it to a design standard. Do design standards discuss granularity of the
design? Do they tell you how to document a design? Do they tell you how to describe a
design? Do they tell you how parts of the design can/should relate to one another? I
think the answers to ALL these questions are yes, and the equivalent would hold true
for process standards.

Q. Do you have a sample or a template of a standard?

A. Some references:

Bill Curtis, Marc I. Kellner, and Jim Over, "Process Modeling," Communications of the
ACM, Vol. 35, No. 9, September 1992, pp. 75-90.

David Harel, "On Visual Formalisms," Communications of the ACM , Vol.31, No. 5, May
1988, pp. 514-530.

David Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, and A. Shtul-
Trauring, "STATEMATE: A Working Environment for the Development of Complex
Reactive Systems," Proceeding of the 10th IEEE International Conference on Software
Engineering, Singapore, IEEE Press, 13-15 April 1988.

G.F. Hoffnagel and W. Bergei, "Automating the Software Development Process," IBM
Systems Journal, Vol. 24, No. 2, 1985, pp. 102-120.

Watts S. Humphrey and Marc I. Kellner, "Software Process Modeling: Principles of
Entity Process Models," Proceedings of the Eleventh International Conference on
Software Engineering, IEEE Computer Society Press, 1989, pp. 331-342.

Marc I. Kellner and Gregory A. Hansen, "Software Process Modeling: A Case Study,"
Proceedings of the Twenty-Second Annual Hawaii International Conference on
Systems Sciences, Vol. II - Software Track, IEEE Press, 1989, pp. 175-188.

Marc I. Kellner, "Software Process Modeling: Value and Experience," SEI Annual
Technical Review, Carnegie Mellon University, Pittsburgh, PA, 1989, pp. 23-54.

Marc I. Kellner, "Software Process Modeling Support for Management Planning and
Control," Proceedings of the First International Conference on Software Process, IEEE
Computer Society Press, 1991, pp. 8-28.

R.A. Radice, N. K. Roth, A. C. O'Hara, Jr., and W. A. Ciarfella, "A Programming
Process Architecture," IBM Systems Journal, vol. 24, no. 2, 1985.

Ronald A. Radice and Richard W. Phillips, Software Engineering: An Industrial

http://www.sei.cmu.edu/cmm/docs/q-and-a.2.html (9 of 12) [3/16/2004 4:42:03 PM]

Software CMM Q&A #2

Approach, Volume 1, Simon & Schuster, Englewood Cliffs, NJ, 1988.

Training Program

Q. The contractor had a terrific training plan but did not implement it because "the
customer would not pay for it." None the less, the SCE team assessed them as
inadequate since there was no implementation. Should the customer pay for training?

A. If the customer has an interest in an on-going customer/supplier relationship, then it
behooves the customer to be proactive in supporting the development of skills pertinent
the area of the relationship.

If the customer refuses to pay for training, however, the contractor should bite the bullet
and train their people out of their own pocket. This is a basic cost of quality issue. If you
believe that:

● people who are happy about their continuing professional development are
more likely to stay with a company

● high turnover leads to both low productivity and low quality, with a
corresponding impact of high cost

● training is value-added because it increases the skill of the people doing the
work then I don't see how a contractor can legitimately claim that "the customer
won't pay for training" makes training Not Applicable. It just doesn't hold for me.

The flip side, of course, is that:

● training costs money
● people being trained are not working on a product
● key people may be needed on the project at critical times

It's long-term vs short-term views that we're looking at. If people are viewed as a
resource to be used up and discarded when the contract is over, then I'm not sure that
contractor is one that I would want to establish a long-term customer/supplier
relationship with.

Of course there's also the possibility that the "terrific training plan" was really pretty
lousy and not worth implementing if the customer wouldn't pay for it :-)

A. The question concerns the apparent absence in the Software Project Planning KPA
of the need to define project-specific training in the project plans. Is this an oversight or
an omission that will be corrected in the next version of the CMM? I would think, as a
matter of good project planning, that plans should specify the training that team
members will need to receive, the timing of same, the potential impacts to schedule of
off-site training, the cost of training billed to the project, etc. But the CMM seems to omit
these notions.

A. Project training plans are specifically mentioned in Level 3 in Training Program, but
you're right that they aren't mentioned at Level 2. It is certainly an omission that should
be considered. If anyone thinks it's important enough to write a change request (hint,
hint), then it would probably be added in the next version of the CMM.

Integrated Software Management

http://www.sei.cmu.edu/cmm/docs/q-and-a.2.html (10 of 12) [3/16/2004 4:42:03 PM]

Software CMM Q&A #2

Q. ISM Activity 1 - The project's defined software process is developed by tailoring the
organization's standard software process according to a documented procedure.. How
detailed is a "documented procedure?"

A. Detailed enough to be useful; not too detailed to be usable.

Q. Do you have a sample or a template of this procedure?

A. The bottom line is that the CMM leaves a lot of flexibility in terms of level of detail,
etc., that's needed to document processes. There are a number of factors that influence
how you document processes, including:

● size of organization
● organizational culture
● size of project
● determinism of process
● process description tools
● degree of automated process support
● technical sophistication of management
● budget available for process definition
● degree of organizational support for process definition
● etc.

There are no simple answers to this question.

Peer Reviews

Q. The contractor had great procedures for walkthroughs in their "generic SDP". But
EVERY project tailored out all references to requirements, code, and test case
walkthroughs and did not use any forms for recording preparation effort or summarizing
findings (they did however have adequate Action Item Logs). The project level SDPs
which tailored out these walkthrough procedures were approved by the company's
Software Review Board which oversees implementation of the "procedures in the
generic SDP." But the team assessed this KPA as inadequate. Should a KPA be
acceptable if a company has good walkthrough procedures but tailors (most) all of them
out with the approval of a higher review authority?

A. I consider this a judgement call on the part of the SCE team, in light of the needs of
the acquisition. As described, this is a case of trying to score well, rather than
implementing a process. A company-level process should be applied to the majority of
cases (although when there are alternatives, picking one of the alternatives is the
reasonable interpretation of majority rule). Consistently tailoring out practices violates
the intent of the CMM.

The judgement might be that Peer Reviews is satisfied (if the procedures are good), but
Software Product Engineering is not, since SPE calls out peer reviews for requirements
(PE.AC.2.8), code (PE.AC.4.4), and test cases (PE.AC.5.6). I could infer from your
description that adequate peer reviews are implemented in some areas, such as
design. The question, if I wanted to probe more deeply, would then be what alternative
quality control mechanisms is used for these particular cases.

http://www.sei.cmu.edu/cmm/docs/q-and-a.2.html (11 of 12) [3/16/2004 4:42:03 PM]

Software CMM Q&A #2

top | CMM main page

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2004 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/cmm/docs/q-and-a.2.html
Last Modified: 21 July 2003

http://www.sei.cmu.edu/cmm/docs/q-and-a.2.html (12 of 12) [3/16/2004 4:42:03 PM]

mailto: sshrum@sei.cmu.edu
http://www.sei.cmu.edu/about/disclaimer.html

Questions and Answers on the CMM

Mark C. Paulk
Issue #2

2 August 1994

I am frequently asked questions on how to interpret the CMM in various
contexts. The following “newsletter” may be of general use. It reproduces the 2
August 1994 mailing to the CMM Correspondence Group. I have to caveat these
answers by saying that they represent my opinion and do not represent official
SEI positions. They have typically not been internally reviewed, but they do
represent a well-informed opinion on what the CMM means.

You are welcome to ask questions on the CMM. I do not guarantee quick
answers, although I’ll try to get back to you as soon as possible. Sometimes that’s
the same day I receive a question, sometimes it may be a month, depending on
my travel schedule and work load. I prefer to receive questions in writing by e-
mail. I will lightly edit and sanitize question and answer before distribution in
this newsletter.

Mark Paulk
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
Fax #: (412) 268-5758
Internet: mcp@sei.cmu.edu

General Questions and Answers on the CMM

In our thinking
A policy specifies what will happen,
A procedure specifies how it will happen, and
A standard specifies the quality of what will happen.

As you developed the KPA of the CMM document were there rules such as these for
interpretation of these terms:

Our general guidelines were similar:
policy sets the cultural expectations of the organization

- “that's how we do things around here”
procedure is process-oriented (how)

- a set of steps for doing something
standard is product-oriented (both functional and quality)

- what the resulting work product will look like

CMM Q&A Issue #2 1

Requirements Management

In the CMM, each KPA has a measurements and analysis section. However, unlike the
other KPAs, under Requirements Management, there does not appear to be an example
measurement of “work completed, effort expended in Requirements Management
compared to the plan.” Understanding that all of KPA measurements are only
"examples" was this merely an omission, or is there some other reason why requirements
costs are not relevant?

It was merely an omission. A complicating factor may be that much of the work
in RM may be done in proposal phase and early in the life cycle. Depending on
your project management process, you may only have "draft plans" in place early
in the life cycle, so you have some complications in tracking against the plan.
This is a particular case, however, of tracking in a rework/revised plan
environment. Also, much of this work may be done by Systems Engineering, so
the SDP part may (or may not) be separately managed from the Project
Management Plan part - depending on the degree of concurrency/integration
between your engineering groups.

As I understand, the CMM is directed to mission-critical, development efforts. For
(new) development projects, one can determine a baseline of software requirements. In
measuring the "change activity" for allocated requirements, this would suggest to me
evaluating the volatility of requirements by measuring the number of changes to the
baseline. In your experience, is there value to comparing the number of changes to the
number of requirements in the baseline? This could be expressed as a % of change, as
opposed to a count only.

In a development environment, yes, because it helps you understand the
relationship of volatility to eventual delivery. For maintenance, you may be
more interested in trends as related to block updates.

In our environment, most of our work is in the arena of MAINTENANCE, and as such
we do not have the baseline requirements for the original production software on legacy
systems. What we could do is as follows: Using the medium of the System Service
Requests (SSRs) (a form to report problems, request enhancements to production
systems, etc.), we could define, itemize and enumerate the requirements related to each
SSR, thereby determining a maintenance baseline. If changes ensue during the course
of working to satisfy these requirements, then one could monitor change to this baseline.
(Note that (1) costs are tracked via estimates and actuals to SSRs and (2) time cards
have the capability of tracking time spent in Requirements Management activities.)
Over time, one could (1) collect costs to manage requirements and (2) determine % of
requirements changed over the entire SSR implementation and/or the phases/sub-phases.
Both of these would be indicators of how much time to estimate for requirements

CMM Q&A Issue #2 2

management relative to number of requirements and how much time should be expected
to accommodate changes to requirements.

I would assume that you do block updates and have multiple releases based on
different maintenance baselines per update. SSRs would be tracked to a
particular baseline ... but it looks like you want/need to track changes to SSR
changes, so your SSRs may be the equivalent of a functional release (operational
increment, etc.). In that case, I'd treat the SSR as a baseline and measure volatility
in terms of change requests to that baseline.

What experience if any, have you had with enterprises dealing with maintenance
software vs. development software, with regard to requirements management?

Look at some of the experience papers coming out of the IBM Houston (now
Loral Space Information Systems) Space Shuttle software project. They're in an
environment that would seem to be somewhat similar to what you're dealing
with. Also telecom companies have a similar set of problems and have published
on their update/release process. Check some of the recent international
conference proceedings for up-to-date citations.

The first question arose out of an assessment of a set of maintenance projects involving
legacy systems. The legacy systems are poorly documented in general, and lack
documentation of the original requirements, in particular. The organization handles
software problem reports (SPRs) and baseline change requests (BCRs), which are
documented explicitly to ensure clarity, completeness, feasibility and testability.
Testing of the changes is made somewhat awkward because testers lack documentation of
requirements for the entire system (as opposed to just the specific SPRs and BCRs,
whose changes they can verify directly). The question is whether the organization meets
the spirit and letter of the Requirements Management KPA if they do not back-
document all the system's requirements (an activity that might need several man-years'
effort to complete). Does the SEI have an official position on this situation? Your
opinion?

I can't give you an "official" position, but I'm happy to give you my opinion.

Requiring extensive back documentation would be unreasonable, although it
might be desirable to maintain an architectural view of what's going on in the
system. In this environment there would seem to be two critical needs:

* a good regression test suite, to make sure you aren't accidentally blowing
away functionality that was there, but which may be undocumented (this may
just be an add-on to the undocumented requirements problem, but it's certainly
another aspect to worry about), although I suppose you could use the "if it goes
away and nobody complains, we really didn't need it anyway" argument

* good documentation and tracking of changes and change
requests/problem reports, which you seem to have

CMM Q&A Issue #2 3

The second need would address the spirit of RM, although I think you'd agree
that there's a noticeable vulnerability here. It's characteristic of many legacy
systems, however, and we're just going to have to live with them (at least until
the year 2000 when most of them will turn belly up on two-digit years).

I would classify this KPA as satisfactorily addressed, but document a finding that
there is a risk here that needs to be tracked over time. If the legacy system is to
be kept, and it's critical, it might be worthwhile to consider re-engineering it.

Software Project Planning

A question came up concerning the interpretation of the Project Planning KPA practice
that says "Size, cost, and schedule estimates must have a BASIS IN REALITY" (in SEI
training materials). When contractors said they use informal personal experience that is
undocumented or tracked, many team members said that their estimates satisfied this
criteria since developers were basing their estimates on their personal experience. I
however said that this is not sufficient for a Defined or Repeatable process. I was
looking for historical logs or data bases, estimation procedures, and a formal comparison
of actuals vs. planned to improve the estimation process. What does "basis in reality"
mean?

PP.AC.9.3 says "historical data are used where available." PP.AC.9.4 and 9.5 go
on to talk about documenting assumptions and estimates. There is no explicit
requirement that the historical data be documented initially, and initially I would
doubt that it would be. One purpose of documenting, however, is to
institutionalize corporate knowledge. If the organization is documenting and
plans to use this historical data more formally in the future, I would have no
concerns. If they aren't, then I would be concerned they're looking at the letter of
the law rather than the spirit. Personal experience is a beginning of "a realistic
basis" and the major concern of realism could be (at least partially) addressed by
estimating procedures that prevented/controlled a proposal manager who said
"we have to cut this by 25% to win the contract."

In a similar vein, Measurement & Analysis is the beginning of improvement for
the planning process, but note that we do not close the loop (in the PDCA cycle
sense, where this is the Check aspect) at Level 2. Improvement of the planning
process is not required at Level 2, although we do expect to see the infrastructure
being put into place (i.e., M&A).

Level 3 is supposed to be using the organization's software process database,
which contains this kind of historical data, so I infer the question applies only to
the Level 2 instantiation.

CMM Q&A Issue #2 4

- Humphrey's Book: To clarify the above criteria concerning "basis of reality" I wanted
the team to refer to Humphrey's book for clarification. But some team members said
that Humphrey's book is NOT a reference book for appraisal teams and should not be
used to clarify the intent of some of the bullets presented in the training . Should teams
refer to Humphrey's book for clarification of KPAs?

I would infer that this is a very audit oriented team. To use the CMM correctly,
one must apply professional judgement. (As many of the team members seemed
willing to do in the case of personal experience.) Any tool, whether it's
Humphrey's book or someone else's, that helps the team understand the
technical and management issues underlying a point of discussion is of value.
No book, and I include the CMM here, should be used to replace thinking and
consideration on the part of the team. Appropriate implementations of the CMM
practices must be judged in a thoughtful and professional way, and the team
should come to consensus on issues. If there are strong minority opinions on the
team, I would expect those to come out as risks in the teams report, even though
the "score" might be satisfactory in that area (I believe you should be able to have
"fully satisfied with findings" for any KPA).

The issue that's being struggled with is whether this is a "good enough" practice.
I believe the CMM provides significant guidance for making these kinds of
judgement, but there are times when flexibility/ambiguity clouds an issue. Do
not remove the possibility of reporting a concern, even if the conservative
decision is that the practice is okay.

There's another underlying issue here, which is the training as it relates to the
CMM. My perhaps biased judgement is that the CMM overrides any particular
set of training materials, which of necessity has to summarize and abstract the
concerns of the CMM. In its turn, the CMM summarizes and abstracts the
software engineering and management practices that a team must judge -
professionally - when doing an assessment or evaluation. The CMM is not, and
cannot be, an absolute objective set of criteria that applies equally in all
environments.

Software Quality Assurance

I am working to tailor the CMM for small-medium IS organizations. The team has agreed
that the CMM, with [minimal] tailoring of terminology, does apply to IS organizations.
One area of concern though is Software Quality Assurance. I think everyone agrees
with the intent behind the SQA KPA, but there is an issue with the "objectivity" of the
SQA group. [It is understood that there does not have to be a dedicated "group" of people
to do these activities.] IS projects/organizations are typically small (some as small as 1 or
2 people, for short durations [< 3 weeks]). It seems that a common practice in this

CMM Q&A Issue #2 5

company's IS organizations is for project managers to perform the role of SQA. Herein
lies the gotcha with the SQA KPA - the objectivity of the SQA group. I consider this
implementation of SQA to be in violation of the intent of the KPA. Can you provide any
insight into how an organization (with many small projects) can implement SQA
without incurring too much cost, but also comply with the intent of the CMM?

I agree that this would be in violation of the intent. Although SQA acts as
management's window on the project, the manager may not be objective either -
and is usually juggling several priorities. That's the reason for bucking
noncompliance issues up to senior management.

I might assign someone outside the project just to run through the SQA function
on a part-time basis. Without an SQA group, the risk you run is a "you scratch
my back, I'll scratch yours" situation developing. Clearly, organization culture
will be a major determinant of whether an ad hoc SQA function is viable. I
would have to know the organization before I could determine whether this
would work or not.

What seems to have been very successful in small projects is setting up a culture
where using the standards and procedures is "just the way we do things around
here," re-inforcing the culture with process definitions that are clearly stated (and
trained where possible, maybe through mentor), and using peer pressure as the
enforcement mechanism. Then an ad hoc function with part time SQA people
can be pretty effective. You can even embed it into your peer review process.

Do you feel there is a lower bound to the size (head count) and duration of projects that is
outside the domain of CMM applicability?

In terms of the goals, no. In terms of implementation, definitely. I've worked in
the two-person project environment before, and our SQA function was definitely
driven by peer pressure - and professional pride. Ultimately that's what is need
in any organization to make Quality work.

Added comment from Judah Mogilensky:

Let me add just a couple of comments to what Mark has already said.

The implicit assumption of the CMM's SQA KPA, founded upon a great deal of
experience with Level 1 and Level 2 organizations, is that the Software Project
Manager role is more concerned with schedule and budget than with process
integrity. I might be willing to entertain an argument that, in a particular
organization, the Software Project Manager is expected to sacrifice budget and
schedule considerations in favor of process integrity, and that person is
rewarded by the organization when he/she does so, and therefore that person is
"objective" about compliance with policies, procedures, and standards. But I
would be very skeptical, and I'd need a lot of convincing. And I would not

CMM Q&A Issue #2 6

consider having the Software Project Manager do SQA acceptable under any
other circumstances.

If an organization is one in which most work is done by very small teams over
very short durations, then I would think that kind of work would be very
important to the organization. I would think that the quality of the products, and
the predictability of the projects, would be crucial to the health of the
organization. And I would think that having standard approaches to planning
and tracking such short, small projects would be a top priority, to save projects
from wasting time inventing their own or not following proven successful
approaches. And therefore someone should be spending at least part of their
time verifying that these small projects are being managed according to
organizational standards, someone other than the Project Manager of each
project. Someone who is in a position to raise a flag with the organization's
management when a project is not being managed according to organizational
standards. This, in a nutshell, is what the SQA KPA calls for.

As Mark knows, I am a strong advocate of the idea that organizations can evolve
to the point where process compliance is part of the culture, where failure to
comply with process is viewed as "socially aberrant behavior," and therefore is
exceptionally rare or totally non-existent. In such a case, I believe that the formal
organizational mechanisms of SQA may no longer be needed, like modern
sutures that are absorbed into the skin and disappear when no longer needed to
hold an incision together. However, to make this case, the organization needs to
show both what mechanisms they have for sustaining this culture and
indoctrinating new individuals, and they need to show that process compliance
can be verified, and has been sustained at very high levels.

Small teams and short duration projects are not exemptions from the concept of
process maturity (although they can typically make effective use of simpler,
lighter forms). Watts Humphrey's next book advocates a Personal Software
Process, where beginning programming students working alone on toy problems
learn to apply a personal process from the start, and collect data, so that they can
scale up their process as their software development skills grow and project
scope expands.

Do you know what Activity 5 in Software Quality Assurance is looking for?
"SQA group audits" -

Is this looking for an audit of every designated work product or could it be a spot audit?

Designation can cover a variety of possibilities. If the Software Requirements
Spec is simply designated to be audited, then it should be fully audited.
However, the designation could be to spot-audit by some criteria that are
specified as part of the designation. The key point is to decide in advance what
the criteria are for auditing (random sampling, 100%, these products only, etc.)
lest schedule pressures "crunch" the SQA process.

CMM Q&A Issue #2 7

"products are evaluated"
Is this an evaluation by the QA group or could it be an evaluation by another group
which the QA group verifies happens?

Either is valid. For example, evaluation could include the conduct of system
testing performed by a testing group and the SQA group verifies that the system
tests were performed according to the specified test process/criteria.

"customer"
There are internal and external customers, in fact every task produces a product which is
then delivered to a customer, what sort of customer is meant here?

Both. For example, SRS may be evaluated via peer review before handover to the
design "customers" and SQA reviews conduct of the peer review. Previous
example was handover to external customer.

"designated"
Can designated be something that QA and the project agree to or is there some other
criteria that should be used to determine designated.

Depends on what the corporate standards/procedures and project tailorings are.
If the corporate standard cannot be tailored to remove some criteria, then project
cannot prevent QA from dinging them. If project has validly tailored something,
with the concurrence of the affected parties - as specified in the tailoring
guidelines (I'm hitting this from a Level 3 perspective, sorry about that), then
that's what QA audits.

Short answer: if organization has criteria, use them; if not, affected parties should
agree on what designated means - early in process rather than when crunch is on.

Can you or the SEI provide any clarification or guidance to CMM users for SQA
Commitment 1 on page L2-61 of 93-TR-25. We are concerned about whether the
recommendation about "performance appraisal by the management of the software project
they are reviewing." We found this recommendation in two places, but one of them is
bracketed supplementary information which can be construed as either guidance or
elaboration in this context. (The quotes follow below.) Could the appraisals be done by a
manager in the same project, but above or independent of the software manager?

You're talking about specific implementations here. This concept maps up to
Goal 2, which states that "Adherence of software products and activities to the
applicable standards, procedures, and requirements is verified objectively" If an
organization can demonstrate objective verification, then independence is not
required. That demonstration is the responsibility of the organization however;
an SCE team, for example, might have a different judgement, depending on how
convincing the argument was.

CMM Q&A Issue #2 8

To answer the questions specifically as asked, however, no, the appraisal would
have to be done outside the project UNLESS you can DEMONSTRATE that there
is an effective escalation mechanism in place that is not affected by the fact that
the person (potentially) halting the project receives raises and promotions from
the individual responsible for meeting schedules. That may not be easy to do. A
close examination of noncompliances and their disposition would be in order.

Does the appraisal have to be done by a manager to whom the program manager of the
whole project (including software) reports?

No. Could be matrixed in from a separate QA organization, for example.

Is there are general issue here that we are missing (indicated by the appearance of the
requirement in two places?

Well, you're quoting from the Overview and the Key Practices. Realizing that
there would be interpretation concerns about organizational structure, section
4.4.3 was written to try and clarify potential concerns and issues in thinking
about different implementations. In going back and looking at it, I think I've just
re-stated what it said. Similarly for the supplementary boxes.

We recognize how and why this independence is useful, so we have several solutions in
mind, but we are also concerned that if our customers (users of the CMM and SCE) have
a different interpretation, then our solution may not be satisfactory. Any clarification
you may provide will be gratefully received.

I infer that your real concern is whether an SCE team would be capable of
judging whether a perfectly adequate implementation was satisfactory or not.
This is a larger question than specifically SQA, although that may be a
particularly sensitive point. Hopefully, the Intro to CMM course will alleviate
some of these concerns when we have SCE teams fully trained.

What are the intended meanings of the terms "deviation" and "noncompliance
item/issue" as used in the CMM? It seems in the CMM these two terms do not mean
the same thing since both are reported to a project but only noncompliance items are
escalated to senior management. A brief survey here of CMM experience people came up
with 4 different sets of definitions.

The CMM defines
deviation - A noticeable or marked departure from the appropriate norm,
plan, standard, procedure, or variable being reviewed.

in the glossary. Noncompliance item is not defined in the glossary; it is
discussed only under the key practice QA.AC.7 on documenting and handling
deviations.

CMM Q&A Issue #2 9

Frankly, we didn't intend any subtle distinction. As QA.AC.7.2 suggests (but
does not explicitly state), a deviation may result in a noncompliance item. It's
like the difference between a failure and a problem report. Deviations occur,
even if they're never identified, documented, and tracked to closure. The
noncompliance item is a form of documented deviation (although there may be
other forms as is perhaps suggested by QA.AC.7.1).

When to officially classify a deviation as a noncompliance item is fuzzy, and I
infer that's the potential source of confusion. There is an implication that if a
deviation is handled at the project level, it doesn't (necessarily) enter the
reporting chain as a noncompliance item. We did not intend to say that this is
the right way to track deviations/noncompliance items. It MAY be useful to
separate deviations into items handled at the project level versus those that need
to be escalated; it MAY be useful to not even track deviations handled at the
project level.

All that we intended in the CMM was to delimit the end points: deviations
occur; noncompliance reports are escalated to senior management as necessary.
The middle territory is left "flexible" but our terminology may have made it
actively ambiguous. If so, this may be an error in the CMM that should have a
change request written for correction in the next release of the CMM. If you feel
this is something that we need to do, please send in a CR.

Organization Process Definition

OPD Activity 1 - The organization's standard software process is developed and
maintained according to a documented procedure. Does this paragraph imply that the
"procedure" is a statement that indicates or acknowledges the organization's policies and
standards will be satisfied and that state-of the practice tools and methods will be used?

Both of these are motherhood kinds of statements. For the first, if the policies,
procedures, and standards are inconsistent or incompatible, it seems clear that
you have a problem. For the second, we don't say anywhere in the CMM that
you have to use state-of-the-practice tools and methods - just that you use
appropriate tools for what you're doing. There may be reasons for not using
state-of-the-practice tools (some reports indicate most organizations don't use
structured programming yet, which is 70s vintage), but the efficiency of your
process in a competitive situation may be so low that you can't survive.

OPD Activity 2 - The organization's standard software process is documented according
to established standards. Do established standards simply specify that elements are
decomposed "to the granularity needed to understand and describe the process", Do
established standards simply state that "Each process element is described and addresses:

CMM Q&A Issue #2 10

. . .", and that "relationships of the process elements are described and address: . . . "? Or
do established standards provide how to document the process.

These standards would tell you, for example, what a process element looks like.
Compare it to a design standard. Do design standards discuss granularity of the
design? Do they tell you how to document a design? Do they tell you how to
describe a design? Do they tell you how parts of the design can/should relate to
one another? I think the answers to ALL these questions are yes, and the
equivalent would hold true for process standards.

Do you have a sample or a template of a standard?

Some references:

Bill Curtis, Marc I. Kellner, and Jim Over, "Process Modeling," Communications
of the ACM, Vol. 35, No. 9, September 1992, pp. 75-90.

David Harel, "On Visual Formalisms," Communications of the ACM , Vol.31,
No. 5, May 1988, pp. 514-530.

David Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, and A.
Shtul-Trauring, "STATEMATE: A Working Environment for the Development of
Complex Reactive Systems," Proceeding of the 10th IEEE International
Conference on Software Engineering, Singapore, IEEE Press, 13-15 April 1988.

G.F. Hoffnagel and W. Bergei, "Automating the Software Development Process,"
IBM Systems Journal, Vol. 24, No. 2, 1985, pp. 102-120.

Watts S. Humphrey and Marc I. Kellner, "Software Process Modeling: Principles
of Entity Process Models," Proceedings of the Eleventh International Conference
on Software Engineering, IEEE Computer Society Press, 1989, pp. 331-342.

Marc I. Kellner and Gregory A. Hansen, "Software Process Modeling: A Case
Study," Proceedings of the Twenty-Second Annual Hawaii International
Conference on Systems Sciences, Vol. II - Software Track, IEEE Press, 1989, pp.
175-188.

Marc I. Kellner, "Software Process Modeling: Value and Experience," SEI Annual
Technical Review, Carnegie Mellon University, Pittsburgh, PA, 1989, pp. 23-54.

Marc I. Kellner, "Software Process Modeling Support for Management Planning
and Control," Proceedings of the First International Conference on Software
Process, IEEE Computer Society Press, 1991, pp. 8-28.

R. A. Radice, N. K. Roth, A. C. O'Hara, Jr., and W. A. Ciarfella, "A Programming
Process Architecture," IBM Systems Journal, vol. 24, no. 2, 1985.

CMM Q&A Issue #2 11

Ronald A. Radice and Richard W. Phillips, Software Engineering: An Industrial
Approach, Volume 1, Simon & Schuster, Englewood Cliffs, NJ, 1988.

Training Program

The contractor had a terrific training plan but did not implement it because "the
customer would not pay for it.” None the less, the SCE team assessed them as
inadequate since there was no implementation. Should the customer pay for training?

If the customer has an interest in an on-going customer/supplier relationship,
then it behooves the customer to be proactive in supporting the development of
skills pertinent the area of the relationship.

If the customer refuses to pay for training, however, the contractor should bite
the bullet and train their people out of their own pocket. This is a basic cost of
quality issue. If you believe that:

1) people who are happy about their continuing professional development
are more likely to stay with a company

2) high turnover leads to both low productivity and low quality, with a
corresponding impact of high cost

3) training is value-added because it increases the skill of the people doing
the work then I don't see how a contractor can legitimately claim that "the
customer won't pay for training" makes training Not Applicable. It just doesn't
hold for me.

The flip side, of course, is that:
1) training costs money
2) people being trained are not working on a product
3) key people may be needed on the project at critical times

It's long-term vs short-term views that we're looking at. If people are viewed as a
resource to be used up and discarded when the contract is over, then I'm not sure
that contractor is one that I would want to establish a long-term
customer/supplier relationship with.

Of course there's also the possibility that the "terrific training plan" was really
pretty lousy and not worth implementing if the customer wouldn't pay for it :-)

The question concerns the apparent absence in the Software Project Planning KPA of the
need to define project-specific training in the project plans. Is this an oversight or an
omission that will be corrected in the next version of the CMM? I would think, as a
matter of good project planning, that plans should specify the training that team

CMM Q&A Issue #2 12

members will need to receive, the timing of same, the potential impacts to schedule of off-
site training, the cost of training billed to the project, etc. But the CMM seems to omit
these notions.

Project training plans are specifically mentioned in Level 3 in Training Program,
but you're right that they aren't mentioned at Level 2. It is certainly an omission
that should be considered. If anyone thinks it's important enough to write a
change request (hint, hint), then it would probably be added in the next version
of the CMM.

Integrated Software Management

ISM Activity 1 - The project's defined software process is developed by tailoring the
organization's standard software process according to a documented procedure.. How
detailed is a "documented procedure?"

Detailed enough to be useful; not too detailed to be usable.

Do you have a sample or a template of this procedure?

The bottom line is that the CMM leaves a lot of flexibility in terms of level of
detail, etc., that's needed to document processes. There are a number of factors
that influence how you document processes, including:

size of organization
organizational culture
size of project
determinism of process
process description tools
degree of automated process support
technical sophistication of management
budget available for process definition
degree of organizational support for process definition
etc.

There are no simple answers to this question.

Peer Reviews

The contractor had great procedures for walkthroughs in their "generic SDP". But
EVERY project tailored out all references to requirements, code, and test case
walkthroughs and did not use any forms for recording preparation effort or summarizing

CMM Q&A Issue #2 13

findings (they did however have adequate Action Item Logs). The project level SDPs
which tailored out these walkthrough procedures were approved by the company's
Software Review Board which oversees implementation of the "procedures in the generic
SDP.” But the team assessed this KPA as inadequate. Should a KPA be acceptable if a
company has good walkthrough procedures but tailors (most) all of them out with the
approval of a higher review authority?

I consider this a judgement call on the part of the SCE team, in light of the needs
of the acquisition. As described, this is a case of trying to score well, rather than
implementing a process. A company-level process should be applied to the
majority of cases (although when there are alternatives, picking one of the
alternatives is the reasonable interpretation of majority rule). Consistently
tailoring out practices violates the intent of the CMM.

The judgement might be that Peer Reviews is satisfied (if the procedures are
good), but Software Product Engineering is not, since SPE calls out peer reviews
for requirements (PE.AC.2.8), code (PE.AC.4.4), and test cases (PE.AC.5.6). I
could infer from your description that adequate peer reviews are implemented in
some areas, such as design. The question, if I wanted to probe more deeply,
would then be what alternative quality control mechanisms is used for these
particular cases.

CMM Q&A Issue #2 14

Software CMM Q&A #3

Welcome

Capability
Maturity
Modeling

Team &
Personal
Software
Process

IDEAL Model

Risk
Management

Software
Engineering
Measurement &
Analysis (SEMA)

Software
Engineering
Information
Repository
(SEIR)

Software
Process
Improvement
Networks
(SPINs)

Appraiser
Program

Acronyms

SEI Initiatives

Conferences

Education &
Training

Questions and Answers about the Software Capability
Maturity Model® (SW-CMM® (Q&A #3)

Questions and Answers on the CMM

Mark C. Paulk
Issue #3 - 29 March 1996

I am frequently asked questions on how to interpret the CMM in various contexts. The
following "newsletter" may be of general use. I have to caveat these answers by saying
that they represent my opinion and do not represent official SEI positions. They have
typically not been internally reviewed, but they do represent a well-informed opinion on
what the CMM means.

You are welcome to ask questions on the CMM. I do not guarantee quick answers,
although I'll try to get back to you as soon as possible. Sometimes that's the same day I
receive a question, sometimes it may be a month, depending on my travel schedule
and work load. I prefer to receive questions by e-mail. I will lightly edit and sanitize
question and answer before distribution in this newsletter.

Mark Paulk
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
FAX: 412-268-5758
E-mail: mcp@sei.cmu.edu

The questions in this issue relate primarily to Intergroup Coordination and Training
Program.

Intergroup Coordination

Encouraging integrated product development

Q. How does the SEI through the CMM process, address the growing project
organizational standard regarding Integrated Product Teams (IPTs). In the IPT concept
the IPT is fully empowered to have, in essence, "womb-to-tomb" responsibility for its
product. Where there is a significant software content this can be at odds with the CMM
in the area of a software manager reporting to the project manager. The CMM speaks
to the need to have a software manager responsible for the software and its
development where there is meaningful software development on a project. In
concurrent engineering and the employment of IPTs this responsibility is empowered to
the IPT leads. In some cases a major project will have multiple CSCIs which all

http://www.sei.cmu.edu/cmm/docs/q-and-a.3.html (1 of 4) [3/16/2004 4:42:14 PM]

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/cmm/docs/q-and-a.3.html?owner=mcp
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/sei-home.html
http://www.sei.cmu.edu/sei-home.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/tsp/
http://www.sei.cmu.edu/tsp/
http://www.sei.cmu.edu/ideal/ideal.html
http://www.sei.cmu.edu/ideal/ideal.html
http://www.sei.cmu.edu/programs/sepm/risk/index.html
http://www.sei.cmu.edu/programs/sepm/risk/index.html
http://www.sei.cmu.edu/sema/welcome.html
http://www.sei.cmu.edu/sema/welcome.html
http://seir.sei.cmu.edu/
http://seir.sei.cmu.edu/
http://www.sei.cmu.edu/collaborating/spins/spins.html
http://www.sei.cmu.edu/collaborating/spins/spins.html
http://www.sei.cmu.edu/managing/app.directory.html
http://www.sei.cmu.edu/managing/app.directory.html
http://www.sei.cmu.edu/about/acronyms/help.acronyms.html
http://www.sei.cmu.edu/about/acronyms/help.acronyms.html
http://www.sei.cmu.edu/about/overview/sei/initiatives.html
http://www.sei.cmu.edu/about/overview/sei/initiatives.html
http://www.sei.cmu.edu/products/events/events.html
http://www.sei.cmu.edu/products/events/events.html
http://www.sei.cmu.edu/products/courses/courses.html
http://www.sei.cmu.edu/products/courses/courses.html
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html
mailto: mcp@sei.cmu.edu

Software CMM Q&A #3

contribute to the ultimate system. In this case the CSCIs are each lead by an IPT leader
and his/her team. It is in this context that the position of a software manager, who has
responsibility for all the software on the project, becomes a concern. My question to you
is, what is the SEI's thinking in the area of addressing Concurrent Engineering/IPTs and
the desirability of empowered teams while at the same time addressing the issue of a
software manager who has responsibility for the software? The two seem to be at odds
with each other.

A. I would certainly encourage the IPT approach. The concern seems based on a
misunderstanding of how to use the CMM properly. If you view the practices as a set of
"shall" statements that have to be slavishly followed, then there's a clash. The CMM,
however, does not have a single shall statement in it. Focus on the KPAs and their
goals. Apply professional judgment whether you are achieving those goals.

Having a software manager who reports to the project manager supports all of the
goals for PTO, but there is a focus in PT.CO.1 on dealing with Goal 2 of PTO on taking
corrective action. Making software issues appropriately visible is the concern; in the IPT
environment that may be less of an issue than in a more traditional environment
because of the empowerment. I would want to confirm that software issues don't get
submerged so that there are surprises near the end of a project, but if the IPT
philosophy holds, that should not be a problem.

In fact, there is a proposal to do a variant of the CMM for IPT next year, which may
clarify some of these concerns. Personally, I am a strong proponent of IPT and
concurrent engineering. I see this as simply an alternate implementation that fully
satisfies (potentially exceeds, in terms of process effectiveness) the goals of the CMM.
As an organization matures, I suspect it would move towards an IPT approach. See
Loral Houston's OnBoard Shuttle project as an example of such a maturation through
their process control boards.

IC policy and scope

Q. Commitment 1, Intergroup Coordination. Does this statement mean that engineering
teams are established across disciplines or organizations or does this statement refer
to the establishment of interdisciplinary teams on a project, i.e. all disciplines are
represented on the project?

A. The scope of IC is set in the introductory paragraphs, where it says: "The purpose of
Intergroup Coordination is to establish a means for the software engineering group to
participate actively with the other engineering groups so the project is better able to
satisfy the customer's needs effectively and efficiently.

Intergroup Coordination involves the software engineering group's participation with
other project engineering groups to address system-level requirements, objectives, and
issues."

So it is within the project that we're talking about in IC.CO.1. The implementation could
be matrixed, concurrent engineering, integrated product teams, etc., which might well
look interdisciplinary across the organization as projects come and go, but IC is project-
specific.

IC and project size

Q. We have a big software project with three subgroups producing 3 different software

http://www.sei.cmu.edu/cmm/docs/q-and-a.3.html (2 of 4) [3/16/2004 4:42:14 PM]

Software CMM Q&A #3

packages and one integration subgroup for the seamless integration of the three. Is
KPA Intergroup Coordination applicable for this project?

A. Yes.

Q. Is Intergroup Coordination only applicable for a big system which involves both
hardware and software groups?

A. No. All engineering and project groups are included under IC.

IC and senior management

Q. How is "senior management" defined in the CAO/IPT concept ?

A. Senior management would be the same as for non-IPT: A management role at a
high enough level in an organization that the primary focus is the long-term vitality of
the organization, rather than short-term project and contractual concerns and
pressures. In general, a senior manager for engineering would have responsibility for
multiple projects.

Or in this case, multiple teams.

Training

Formal training

Q. CMM formally Documented Training Plans for SEI Level 2: Regarding training for
SEI L2 qualification, it seems to me that every KPA has "Abilities" defined for training.
Here are examples: Req Mng Ability 4, Proj Plan Ability 4, Proj Track Ability 4, SQA
Ability 3&4, SCM Ability 4&5. From your experience, do these abilities require a formal
training plan and formal practice to achieve SEI Level 2?

A. What do you mean by formal? The short answer is NO, but some organizational
infrastructure is desirable in terms of identifying common training needs, deciding what
courses answer your specific training requirements, coordinating attendance, etc.

Q. There is obviously more emphasis on formal training in the KPCMM Level 3 KPA
"Training Program".

A. Yes. At Level 3, you are expected to have identified roles, defined training needs,
and specified required training.

Q. I know that in the SEI Technical Report CMU/SEI-87-186, "A Method for Assessing
the Software Engineering Capability of Contractors", page 75, question 1.2.2, it asks if
there is a required training program for all newly appointed managers. I assume this
means a formally documented training plan, right? But it doesn't cover most of the
training mentioned in the Level 2 abilities I have listed above, so I am not sure. What do
you think?

A. Documented training plan and records, yes. There are only 85 questions in the 1987
questionnaire. There is a sampling issue. It's better addressed in the 1994

http://www.sei.cmu.edu/cmm/docs/q-and-a.3.html (3 of 4) [3/16/2004 4:42:14 PM]

Software CMM Q&A #3

questionnaire.

Training deployment

Q. I would prefer video courses as much as possible for cost reasons. Also, in general,
during a SEI evaluation, how many personnel (all, 80%, 50%) have to be trained before
you are considered to have met the KPA objective?

A. That's a judgment call, but in general "all". You may have folks waived from training if
they don't need it, and a few folks (like new hires) may be in the queue, but in general
everyone who needs training should have had it to satisfy the pertinent KPA. That's one
of the reasons deployment is so hard and it takes a while to get to the next level -- it's
not just saying you're going to offer it, but to have actually done so.

Return to top of the page

Return to main page

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2004 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/cmm/docs/q-and-a.3.html
Last Modified: 21 July 2003

http://www.sei.cmu.edu/cmm/docs/q-and-a.3.html (4 of 4) [3/16/2004 4:42:14 PM]

mailto:mcp@sei.cmu.edu?Subject=q-and-a.3.html
http://www.sei.cmu.edu/about/disclaimer.html

Questions and Answers on the CMM

Mark C. Paulk
Issue #3

29 March 1996

I am frequently asked questions on how to interpret the CMM in various
contexts. The following "newsletter" may be of general use. I have to caveat
these answers by saying that they represent my opinion and do not represent
official SEI positions. They have typically not been internally reviewed, but they
do represent a well-informed opinion on what the CMM means.

You are welcome to ask questions on the CMM. I do not guarantee quick
answers, although I'll try to get back to you as soon as possible. Sometimes that's
the same day I receive a question, sometimes it may be a month, depending on
my travel schedule and work load. I prefer to receive questions by e-mail. I will
lightly edit and sanitize question and answer before distribution in this
newsletter.
 Mark Paulk
 Software Engineering Institute
 Carnegie Mellon University
 Pittsburgh, PA 15213-3890
 Fax #: (412) 268-5758
 Internet: mcp@sei.cmu.edu

The questions in this issue relate primarily to Intergroup Coordination and
Training Program.

Intergroup Coordination

Encouraging integrated product development

How does the SEI through the CMM process, address the growing project organizational
standard regarding Integrated Product Teams (IPTs). In the IPT concept the IPT is fully
empowered to have, in essence, "womb-to-tomb" responsibility for its product. Where
there is a significant software content this can be at odds with the CMM in the area of a
software manager reporting to the project manager. The CMM speaks to the need to have
a software manager responsible for the software and its development where there is
meaningful software development on a project. In concurrent engineering and the
employment of IPTs this responsibility is empowered to the IPT leads. In some cases a
major project will have multiple CSCIs which all contribute to the ultimate system. In
this case the CSCIs are each lead by an IPT leader and his/her team. It is in this context
that the position of a software manager, who has responsibility for all the software on the
project, becomes a concern. My question to you is, what is the SEI's thinking in the area
of addressing Concurrent Engineering/IPTs and the desirability of empowered teams

while at the same time addressing the issue of a software manager who has responsibility
for the software? The two seem to be at odds with each other.

I would certainly encourage the IPT approach. The concern seems based on a
misunderstanding of how to use the CMM properly. If you view the practices as
a set of "shall" statements that have to be slavishly followed, then there's a clash.
The CMM, however, does not have a single shall statement in it. Focus on the
KPAs and their goals. Apply professional judgment whether you are achieving
those goals.

Having a software manager who reports to the project manager supports all of
the goals for PTO, but there is a focus in PT.CO.1 on dealing with Goal 2 of PTO
on taking corrective action. Making software issues appropriately visible is the
concern; in the IPT environment that may be less of an issue than in a more
traditional environment because of the empowerment. I would want to confirm
that software issues don't get submerged so that there are surprises near the end
of a project, but if the IPT philosophy holds, that should not be a problem.

In fact, there is a proposal to do a variant of the CMM for IPT next year, which
may clarify some of these concerns. Personally, I am a strong proponent of IPT
and concurrent engineering. I see this as simply an alternate implementation
that fully satisfies (potentially exceeds, in terms of process effectiveness) the
goals of the CMM. As an organization matures, I suspect it would move towards
an IPT approach. See Loral Houston's OnBoard Shuttle project as an example of
such a maturation through their process control boards.

IC policy and scope

Commitment 1, Intergroup Coordination. Does this statement mean that engineering
teams are established across disciplines or organizations or does this statement refer to
the establishment of interdisciplinary teams on a project, i.e. all disciplines are
represented on the project?

The scope of IC is set in the introductory paragraphs, where it says: "The purpose
of Intergroup Coordination is to establish a means for the software engineering
group to participate actively with the other engineering groups so the project is
better able to satisfy the customer's needs effectively and efficiently.

Intergroup Coordination involves the software engineering group's participation
with other project engineering groups to address system-level requirements,
objectives, and issues."

So it is within the project that we're talking about in IC.CO.1. The
implementation could be matrixed, concurrent engineering, integrated product
teams, etc., which might well look interdisciplinary across the organization as
projects come and go, but IC is project-specific.

IC and project size

We have a big software project with three subgroups producing 3 different software
packages and one integration subgroup for the seamless integration of the three. Is KPA
Intergroup Coordination applicable for this project?

Yes.

Is Intergroup Coordination only applicable for a big system which involves both
hardware and software groups?

No. All engineering and project groups are included under IC.

IC and senior management

 How is "senior management" defined in the CAO/IPT concept ?

Senior management would be the same as for non-IPT: A management role at a
high enough level in an organization that the primary focus is the long-term
vitality of the organization, rather than short-term project and contractual
concerns and pressures. In general, a senior manager for engineering would
have responsibility for multiple projects.

Or in this case, multiple teams.

Training

Formal training

CMM formally Documented Training Plans for SEI Level 2: Regarding training for SEI
L2 qualification, it seems to me that every KPA has "Abilities" defined for training. Here
are examples: Req Mng Ability 4, Proj Plan Ability 4, Proj Track Ability 4, SQA
Ability 3&4, SCM Ability 4&5.

 From your experience, do these abilities require a formal training plan and formal
practice to achieve SEI Level 2?

What do you mean by formal? The short answer is NO, but some organizational
infrastructure is desirable in terms of identifying common training needs,
deciding what courses answer your specific training requirements, coordinating
attendance, etc.

 There is obviously more emphasis on formal training in the KPCMM Level 3 KPA
"Training Program".

Yes. At Level 3, you are expected to have identified roles, defined training needs,
and specified required training.

 I know that in the SEI Technical Report CMU/SEI-87-186, "A Method for Assessing the
Software Engineering Capability of Contractors", page 75, question 1.2.2, it asks if there
is a required training program for all newly appointed managers. I assume this means a
formally documented training plan, right? But it doesn't cover most of the training
mentioned in the Level 2 abilities I have listed above, so I am not sure. What do you
think?

Documented training plan and records, yes. There are only 85 questions in the
1987 questionnaire. There is a sampling issue. It's better addressed in the 1994
questionnaire.

Training deployment

I would prefer video courses as much as possible for cost reasons. Also, in general,
during a SEI evaluation, how many personnel (all, 80%, 50%) have to be trained before
you are considered to have met the KPA objective?

That's a judgment call, but in general "all". You may have folks waived from
training if they don't need it, and a few folks (like new hires) may be in the
queue, but in general everyone who needs training should have had it to satisfy
the pertinent KPA. That's one of the reasons deployment is so hard and it takes a
while to get to the next level -- it's not just saying you're going to offer it, but to
have actually done so.

Software CMM Q&A #4

Welcome

Capability
Maturity
Modeling

Team &
Personal
Software
Process

IDEAL Model

Risk
Management

Software
Engineering
Measurement &
Analysis (SEMA)

Software
Engineering
Information
Repository
(SEIR)

Software
Process
Improvement
Networks
(SPINs)

Appraiser
Program

Acronyms

SEI Initiatives

Conferences

Education &
Training

Questions and Answers about the Software Capability
Maturity Model® (SW-CMM® (Q&A #4)

Mark C. Paulk
Issue #4 - 7 April 1997

I am frequently asked questions on how to interpret the CMM in various contexts. The
following "newsletter" may be of general use. I have to caveat these answers by saying
that they represent my opinion and do not represent official SEI positions. They have
typically not been internally reviewed, but they do represent a well-informed opinion on
what the CMM means. The Q&A has been sanitized for proper names (where
appropriate), but it has not been cleaned up for publication -- it's pretty much the off-the-
cuff reply that folks have gotten to their questions.

You are welcome to ask questions on the CMM. I do not guarantee quick answers,
although I'll try to get back to you as soon as possible. Sometimes that's the same day I
receive a question, sometimes it may be a month, depending on my travel schedule
and work load. I prefer to receive questions by e-mail. I will lightly edit and sanitize
question and answer before distribution in this newsletter.

Mark Paulk
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
FAX: 412-268-5758
E-mail: mcp@sei.cmu.edu

The questions in this issue are fairly general. Topics covered include:

● TQM and CMM
● Organizational analysis
● If the customer won't pay
● Tailoring
● Small projects
● Common threads in the CMM
● Incremental development
● Incremental process improvement
● Legacy systems and maintenance documentation
● Software project dynamics
● Not Applicable versus risk
● Discipline versus bureaucracy
● COTS
● Required overtime
● Methodologies
● Regular versus periodic

http://www.sei.cmu.edu/cmm/docs/q-and-a.4.html (1 of 20) [3/16/2004 4:42:28 PM]

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/cmm/docs/q-and-a.4.html?owner=mcp
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/sei-home.html
http://www.sei.cmu.edu/sei-home.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/tsp/
http://www.sei.cmu.edu/tsp/
http://www.sei.cmu.edu/ideal/ideal.html
http://www.sei.cmu.edu/ideal/ideal.html
http://www.sei.cmu.edu/programs/sepm/risk/index.html
http://www.sei.cmu.edu/programs/sepm/risk/index.html
http://www.sei.cmu.edu/sema/welcome.html
http://www.sei.cmu.edu/sema/welcome.html
http://seir.sei.cmu.edu/
http://seir.sei.cmu.edu/
http://www.sei.cmu.edu/collaborating/spins/spins.html
http://www.sei.cmu.edu/collaborating/spins/spins.html
http://www.sei.cmu.edu/managing/app.directory.html
http://www.sei.cmu.edu/managing/app.directory.html
http://www.sei.cmu.edu/about/acronyms/help.acronyms.html
http://www.sei.cmu.edu/about/acronyms/help.acronyms.html
http://www.sei.cmu.edu/about/overview/sei/initiatives.html
http://www.sei.cmu.edu/about/overview/sei/initiatives.html
http://www.sei.cmu.edu/products/events/events.html
http://www.sei.cmu.edu/products/events/events.html
http://www.sei.cmu.edu/products/courses/courses.html
http://www.sei.cmu.edu/products/courses/courses.html
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html
mailto:mcp@sei.cmu.edu

Software CMM Q&A #4

TQM and CMM

Q. I would like to know what you think the relationships are between TQM and its
philosophies and the CMM. ... I have been reading more and more articles lately stating
the philosophies of Deming, Juran and Crosby are the basis for the CMM. I also am
seeing more articles, similar to yours, merging ISO 9000 and the CMM. I do not see the
connection to the TQM founders.

It seems to me a company could be ISO 9000 and CMM level 4 and be creating cement
rain coats. They may be the highest quality cement rain coats ever manufactured. They
may be manufactured with very mature processes. The company may be following all
their processes definitions right from the ISO 9000 guidelines. But what good is it if no
customers want cement rain coats.

TQM is customer focused. It has as its foundation the needs of society. Deming's point
is that healthy companies with healthy employees are necessary for the survival of a
society. What he documented with his 14 points and his 7 deadly diseases has little to
do with the CMM. Maybe one is about the why and the other is about the how.

The precepts and practices of TQM are essential.
The precepts and practices of the CMM are essential.
ISO 9000 certification seems to be becoming another essential.

These are all complimentary. They are also synergistic. They have some common
points, like continuous improvement, but that does not mean they have come from the
same place or are meant to do the same things. Good, logical, and practical solutions
to problems such as what TQM and the CMM are attempting to solve will overlap.

I am not very far along in this journey. I am very likely dead wrong.

What do you think the relationships are between TQM and its philosophies and the
CMM?

A. CMM only attacks the process side of TQM, and specifically for software
engineering, although the principles can be applied to any (engineering) discipline.

There are some very important aspects of TQM that are deliberately not addressed in
the CMM. What value, for example, would the SEI add to a discussion of the "people"
issues? Is there anything that's software-specific about "people"?

The obvious answer is no, yet we can add value in the software process arena, while at
the same time we should recognize the importance of the people issues in enabling
software process improvement.

As I said, we made a deliberate decision to focus on the area where we could make a
major contribution. Things change over time...

The desire of some organizations to have a "People CMM" to help them build their
human resource has led to the People CMM. The word software isn't mentioned a
whole lot... and it was written by HR-knowledgeable folks.

We are drafting a chapter for CMM v2 on interpersonal skills and organizational change

http://www.sei.cmu.edu/cmm/docs/q-and-a.4.html (2 of 20) [3/16/2004 4:42:28 PM]

Software CMM Q&A #4

- not as key practices that describe maturity levels, but in the context of enabling
process improvement and pointing to better sources of information, such as the P-
CMM, Deming, etc. A lot of excellent work has been done by folks much more
knowledgeable than we about interpersonal skills!

We also don't (currently) talk about strategic business planning or customer satisfaction
explicitly, which are some of the other important TQM topics. We may do something
about those in CMM v2 also, but we are the _software_ engineering institute and need
to stay focused on our primary mission, while not ignoring the critical interdependencies
- a difficult balance to maintain.

The CMM was inspired by Crosby's maturity grid, but it has evolved a lot over the past
several years. If you'd like to track it's evolution, you could read:

Mark C. Paulk, "The Evolution of the SEI's Capability Maturity Model for Software,"
Software Process: Improvement and Practice, Vol. 1, Pilot Issue, Spring 1995, pp. 3-15.

Q. Will it cost as much to produce a product when on level 1/2/3/4 as it will producing
the equivalent product when on the level above? (Has any company really performed
this experiment? A 2 by 2 matrix?)

A. The ones who have data have demonstrated to their satisfaction that it's cheaper
and quicker to build products at a higher maturity level.

Q. Or does the product automatically change when you produce it being on a
different/higher level?

A. That's a business decision. You have added opportunities on the cost/functionality
tradeoff curve.

Q. Of course, the workers will give the product a higher subjective value. So does the
management, hence the selling price is likely to be higher.

Is the cost (as perceived by the manager) to produce a product knowing how the total
cost is distributed over all activities involved less than the perceived cost when nothing
is known about the cost distribution?

Will you charge the same for a s/w product when you're on level 2/3/4/5 as you charged
for an equivalent product (functionality perceived by the customer) when you were on
the level below?

A. That's a business decision.

Q. If the cost of developing s/w products really decreases as you move up the CMM
ladder, how will you be looked upon by potential customers if you claim to sell/produce
products with the same quality as your competitors notably cheaper?

A. Almost by definition, it won't be the same quality and cheaper. It will have to be
higher quality and cheaper. You're forgetting rework costs. About 40% of software
project costs are in fixing bugs to get something shippable. If appraisal/prevention
permits you to build stuff for 30% less, by definition it's going to be a higher quality
product - see TQM literature.

http://www.sei.cmu.edu/cmm/docs/q-and-a.4.html (3 of 20) [3/16/2004 4:42:28 PM]

Software CMM Q&A #4

Q. I've been told that most companies decide to produce cheap products or high quality
products (read expensive). But there are some companies that try to sell/produce
cheap high quality products (called in-betweens?). How do these in-betweens perform
on the market compared to the other two?

A. Don't assume that all business decisions are consciously made ;-)

Also, don't assume that a Civic is a low-quality car just because it's cheap. It's a high
quality car (remember fitness for use!) targeted to an inexpensive market. Quality /=
luxury.

This is the classic misunderstanding of the quality movement. Before studying the
software process improvement world, study the TQM world. Read Deming and Juran.
SPI is an application of those more general concepts in the software world.

Q. I think that levels 2 and 3 are quite different/separate from levels 4 and 5. My view is
that levels 2 and 3 are parts of a larger goal, namely to stabilize the process(es), i.e.,, to
minimize the variance/deviation/fluctuations.

Levels 4 and 5, on the other hand, deal more with adjusting "the level/height of the
curve". This is just my opinion. Is it totally wrong? (Doesn't this imply that defect
prevention is misplaced at level 5? I don't know enough of the theory. I have lots and
lots of reading to do...)

A. Think of it as qualitative vs. quantitative process control then process improvement -
which gives you 4 levels above level 1.

Q. This means that you disagree with the basic principle of TQM. While I don't
particularly mind, it's a very old argument - that quality costs - that's been debated by
far abler folks than I.

I don't disagree. But, I think (it's just an uneducated opinion) it's reasonable to assume
that the levels 2 and 3 block will give a better "ROI" than t he upper block. Why?
Because it is probably easier and cheaper to remove the first errors.

A. Pick the low hanging fruit, as we say in the States.

Q. Again, this goes back to the old "quality costs" debate. We're seeing so me of this
resurface under "good enough software". I have no problem with this concept so long
as you realize this is a "fitness for use" debate; when i t becomes operationalized as
"whatever junk we can get a customer to buy", I think the market will determine pretty
effectively.

I think I'm getting your point, but I'm not sure. Please, could you elaborate e this a bit? I
am having trouble remembering all the stuff all the time.

A. Analogy: GM said they built good cars and could point to domination of market in
50's through early 70's as proof that they understood what was good enough. The
environment changed... and the companies that had focused on "quality" made
enormous inroads...

Q. Do you think that all SE developers should try to achieve level 5? And, do you think
that they all have go "all the way", or do you think that companies like Microsoft

http://www.sei.cmu.edu/cmm/docs/q-and-a.4.html (4 of 20) [3/16/2004 4:42:28 PM]

Software CMM Q&A #4

necessarily don't have to go as far as companies like LORAL Houston, i.e.,, can
improvement/changes be overdone?

A. Go as far as necessary. If you're level 3, you're world class today. What the
competition may inspire in the future, in terms of business reasons for continuing to
improve and how you improve, will determine your strategy later.

Q. The ones who have data have demonstrated to their satisfaction that it's cheaper
and quicker to build products at a higher maturity level.

It is my opinion that there isn't conclusive proof, yet (At least I think I haven't seen any
proof). Intuitively, the CMM has to work! That is, I hope and think that quality is free
(maybe I should have said this in my first e-mail...). But, what I'm not sure about is that
"state-of-practice" quality is free. [You have to put this into my context: in Sweden
people cannot sue for astronomical amounts of money :-)]

The main problems are that I don't know how they came to the results. How do they
define/measure/calculate productivity for example? And, how do they
define/measure/calculate the cost and the return on changes that supposedly affect the
productivity (reprise)?

A. They defined it based on what they considered important in their environment -
which is always good advice. Their papers provide some details, but they're all different.

Organizational analysis

Q. Responding to a customer's request, here is the situation:

Large corporation with 6 sites around the country. The corporation has 8 major
systems; one at each site plus two sites with two each. The major systems make up
~60% of the corporation's business. The corporation has a SPI effort that encompasses
all 6 sites.

Their assessment plan is to assess a major system at each site (i.e, assess 6
representative systems of the corporation). Assume: the assessment result is that the 6
systems assessed are level 2. What can the corporation say:
a) That the corporation is a level 2 organization.

A. Possible, but I'm not really comfortable with it as stated. This isn't just a sampling
issue, they're really looking at six different sites with what is presumably their best and
brightest.

Are these development efforts? Maintenance projects? Operations?

What about the 2 missing major systems? Will this skew the perception of the process?
You can do ML2 diagnosis on individual projects without worrying about organizational
infrastructure, but if you're skipping 2 major systems, why?

Q. b) That the major systems of the corporation operate at level 2.

A. It isn't the systems, it's the projects or sites that operate at ML2.

http://www.sei.cmu.edu/cmm/docs/q-and-a.4.html (5 of 20) [3/16/2004 4:42:28 PM]

Software CMM Q&A #4

Q. c) Nothing about being level 2 [if you say c), please explain your reasoning some].

A. They're violating a bunch of the organizational analysis heuristics, I think. They're
basically claiming the organization is the whole company, in spite of geographical
dispersion, possible major cultural differences, possible deployment issues, etc. Who is
the sponsoring manager of the SPI effort? Are they directly funding SPI efforts at each
site? Is there sponsorship physically located at each site?

Major qualms about saying "we're ML2" in this kind of context. Certainly if we "endorse"
their statement, we should know a lot more.

Q. Would you say something different if you were the lead assessor? That is, what
would you say about the results when reporting them (assume: you can't change the
assessment scenario, but feel free to add comments on how you would change it).

A. Tough question. This is also sampling issue, similar to 1 big project + bunch of small
ones. Issues of consistency and predictability can be significantly skewed by outliers,
whether more or less mature. What is the definition of "typical project" for company?

I'd go for option C unless I knew a lot more about the assessment. For political reasons,
that may not be viable, but the existence of the political reasons influences me to
believe the organization is likely to be ML1 with ML2 on some critical projects that get a
lot of management attention.

Q. Most of the CMM seems to deal with a single development organization, but many
companies have dozens of development organizations at a site, and try to get an SE I
rating for the entire site. This leaves a lot of questions unanswered.

A. My general comment on this is that it's a bad idea to overload organizations like
you're suggesting happens. I know that it happens also. Depending on why you're
going for an SEI rating, this can have very bad consequences: 1) ineffective
improvement, 2) an SCE team may not make the same mistake (it's one of the reasons
determined for some of the maturity level mismatches between SCEs and SPAs
several years ago), 3) going for a score rather than better business value. Problems,
any way you look at it.

However, I would comment that "dozens" seems like an exaggeration. "Several" seems
a better term and "few" might be even more appropriate. "One" is, I agree, rare for
sizable companies. Organizational analysis is one of the least well-defined aspects of
doing appraisals.

Q. For example, During the analysis of data (step 3, Response Analysis, in your figure
4.1) how do you handle an organization that "falls down" on key process areas in one
group, and scores well on those same KPAs in another group?

A. The organization "fails." The weakest link determines organizational maturity. There
are exceptions, e.g., legacy systems, but inconsistency of deployment is one of the
hallmarks of a level 1 organization. Every company (that survives) has pockets of
excellence. Organizational learning implies a lot more! In particular, predictable
implementation of a consistent process unless there are "external drivers" otherwise.

Q. In some organizations that I have worked for, they gave the full score because the y
felt that the capability existed somewhere in the organization.

http://www.sei.cmu.edu/cmm/docs/q-and-a.4.html (6 of 20) [3/16/2004 4:42:28 PM]

Software CMM Q&A #4

A. There's an optimist in every crowd... rating processes is hard, but this is clearly over
the line of acceptable judgment.

Q. In other places, I've seen them apply a weighting based on the amount of software
produced by each group.

A. I don't think that would work very well either. Is a small amount of life-critical software
less important than a large amount of MIS software? I don't think so... that's one of the
problems with algorithmic approaches -- and why I prefer heuristics that warn an
assessment team of the kinds of issues to be sensitive too, but leaves the responsibility
to the team to apply reasonable professional judgment.

Q. Personally, I feel that the purpose of the CMM/SCE is to identify and prioritize areas
needing improvement, and therefore the areas needing improvement need to be
pointed out as having geographical or other inconsistencies, and the scoring needs to
be based on the WORST rather than the best groups to place the proper management
influence on the problem areas.

A. Seems reasonable to me ;-)

Q. However, no one (in Intel or Motorola for examples) would ever do it that way
because it reflects badly on them. I believe that this is because of a violation o f the
spirit of the SEI, and of Deming's beliefs (that metrics should never be used to rate
people, just the process).

A. I'll pass this along to some of our CBA IPI and SCE folks. I agree with you in
concept, although I don't know enough about your specific examples to judge. Some of
the toughest issues in assessment include:

● organizational analysis (what is the scope of an appraisal?)
● project sampling (what is a representative project? how many are needed in

appraisal?
● what are the "exceptions to the rule" that need to be thoughtfully considered re

their impact on process and organizational capability? E.g., legacy systems,
very small projects (tasks), rapid prototyping projects,...

From James Hart:

There are (being somewhat realistic) a few requirements that must be met before an
organization of that size and geographical separation can say they are at ML 2. For
them to say they are at level 2, they must say this is true for ALL projects in the
organization, with only the exclusion of outliers (e.g., short duration projects, 2-3 man
efforts, those outside the normal business direction). In order for them to make this
claim, then the projects must really be selected in a somewhat random way.
Preselection of 4-5 projects based on criteria OTHER THAN PROCESS-RELATED will
skew their results.

Second, you can only answer such questions as you ask in the context of why they
want to do an assessment. If it is to validate their level and make public the results, they
have potential problems with getting a REALITY-check. People will say and report what
they think management wants (or needs) to hear. Since they wish to do a consolidated
assessment (in essence, combining six assessments into one), then it does not sound
like they are interested primarily in identifying key weaknesses.

http://www.sei.cmu.edu/cmm/docs/q-and-a.4.html (7 of 20) [3/16/2004 4:42:28 PM]

Software CMM Q&A #4

Finally, projects selected for assessments only make up a major part of who is talked to
on an assessment. During interview sessions with personnel, you will want to select
those OUTSIDE of the projects selected. Their inputs will effect the results, so you can't
really say the assessments will only cover their major systems. 60% of the business
may not be 60% of the people or 60% coverage of project processes.

In summary, I would personally not hold much faith in results of the kind suggested.
From experience, I have one data point: an organization wanted to do an assessment
over a very broad range of software developers. We did as they wanted; but they were
not happy with the results. The reason was due to diversity in processes across the
groups; each of the resulting findings were issues for a PORTION of the assessment's
scope, and NONE were REPRESENTATIVE of issues the ORGANIZATION faced as a
whole. They subsequently sent 4-6 months following the assessment weeding through
each of the findings to determine what portions of the organization needed to address
what findings. Consolidating results across diverse areas leads to LESS meaningful
data.

A related point raised by Balzer: at L4-5, it may not be appropriate to focus on specific
practices these high-maturity companies use, but rather at the meta-level, what it is
they do with process capability. Bob's thesis (which I believe has merit and which is
consistent with a conversation we had with Curtis 3 years ago) is that as organizations
mature, their processes more-and-more reflect their product and product family
architectures and their important quality features - and these in turn drive the specific
features of interest in measuring the capability (my paraphrase), so there may not be a
lot of commonality in what is done at the detailed practice level, but more likely at the
level of what they do with capability. This suggests the real enhancements at L4-5 may
not be so much in additional KPAs, but rather:

1. achieving the right level of detail on practices determining, measuring, and
manipulating process capability,

2. better examples (reflective of different product domains, etc.), and
3. making stronger meta-connects with business goals and needs.

If the customer won't pay

Q. Here's a new one. Can an organization be rated Level 3 if a project does not comply
with Level 2 or 3 KPAs if their customer has specifically said he doesn't want to pay for
them? This is in a defense, contract based environment.

A. Yes, if it's a rare occurrence, but I would want to see a directive from the customer
that they refuse this functionality and accept the risk that it entails. More generally, I
would expect a company to "do the right thing" even if the customer says don't do this --
to the extent that a supplier would charge MORE for not doing SCM than for doing it
(after all, the reasons for the KPAs are driven by business concerns).

Tailoring

Q. We have been trying to understand the applicability of the CMM to short cycle time
software support activities. We concluded that applying the CMM in all its rigor will add
to the cycle time of the support activity and possible customer dissatisfaction.

I am now thinking of formulating a support maturity model with the same five levels as
the CMM but with different key practices and KPAs.

http://www.sei.cmu.edu/cmm/docs/q-and-a.4.html (8 of 20) [3/16/2004 4:42:28 PM]

Software CMM Q&A #4

Are there some guidelines to selecting KPAs and KPs for a maturity model? Is there a
generic process for this? Are there any references available? Any light you can throw
on this will be deeply appreciated.

Q. A report on tailoring the CMM is going through the approval cycle now. It's by Mark
Ginsberg. Check with our customer relations people in January (customer-
relations@sei.cmu.edu) to see if it's been released and/or check the anonymous ftp site
for it (ftp.sei.cmu.edu, pub/cmm or pub/documents).

I would disagree with the idea of having different KPAs and claiming it's the same
maturity levels. I would strongly argue that all of the KPAs, with the exception of
subcontract management, apply in any software development or maintenance
environment. The implementation may differ dramatically, and so arguing that different
key practices may needed may be appropriate, but organizations that have tailored the
CMM for small projects observed that 90%+ of the key practices carried forward into
that environment. Where you really get large project/organization specific is in the
subpractices. What is important is mapping the concepts and roles of your environment
to the concepts and roles in the CMM. Once you establish that relationship, then
analyze the applicability of the practices.

I would also refer you to the first newsletter on tailoring the CMM.

Q. I am an SQA member of the SEPG at ZZZ. Recently we have been attempting to
institute Level 2 process on smaller projects. I was reading through the CMM v1.1 (Feb
'93) document and came across the following paragraph:

Has a tailored version of the CMM addressing smaller projects been developed? If not,
has this issue been addressed to some degree in other publications? How can we
obtain such information?

A. We held a workshop on this topic a couple of years ago and concluded that there
was too much variation between small projects and organizations to justify a CMM
tailored specifically for the "small" environment. The challenges were shared, in
general, by "non-small" environments. A resident affiliate, Mark Ginsberg, had come to
the SEI to work on a CMM/small, but this changed the direction more to tailoring in
general. The ultimate result was

Mark Ginsberg and Lauren Quinn, "Process Tailoring and the Software Capability
Maturity Model," Software Engineering Institute, CMU/SEI-94-TR-024, November 1995.

The Software Capability Maturity Model(®) (SW-CMM[®]) is serving as the foundation
for a major portion of the process improvement being undertaken in the software
industry. It is composed of two volumes: the Capability Maturity Model for Software and
the Key Practices of the Capability Maturity Model. The key practices of the SW-CMM
are expressed in terms that reflect normal practices of organizations that work on large,
government contracts. There is, however, a significant population of software-producing
and -acquiring organizations, operating in different environments, for which the key
practices require significant interpretation and/or tailoring, prior to application. This
report presents a tailoring framework that identifies process artifacts, tailoring
processes, and their relationships to project artifacts, and explores the nature of various
kinds of tailoring used in the definition and development of software process
descriptions. Techniques appropriate to each type of tailoring are then discussed. The
general approach utilizes and builds upon the Software Process Framework, whose

http://www.sei.cmu.edu/cmm/docs/q-and-a.4.html (9 of 20) [3/16/2004 4:42:28 PM]

Software CMM Q&A #4

purpose is to provide guidance for designing, analyzing, and reviewing software
processes for consistency with the SW-CMM.

Small projects

Q. One of our major issues that continues to prevent us from reaching level 2: the
degree of flexibility we may or may not allow for our very small projects. Small projects
can be those that last one or two weeks and only have one or two people working on
them.

Specifically, for the very small projects, how much of the level 2 key practices within a
key process area can be waived? Taking the question a step further, can any KPAs,
such as SQA, be waived for our very small projects? We feel that it would be very near
impossible to have our small projects deliver a full project plan, risk analysis, SQA plan,
SCM plan, test plans for all levels of testing, and other similar such activities normally
provided by the larger projects.

A. Rather than saying waived, I'd say have radically different implementations. See the
first CMM newsletter on small projects. Certainly any key practice is subject to radically
different implementation in very small projects, but the general concerns of each of the
KPAs still need to be addressed, albeit at a different level. Look at Watts Humphrey's
new book A DISCIPLINE FOR SOFTWARE ENGINEERING which applies the
concepts at the level of the individual professional for some thoughts on what the CMM
ideas mean in the micro-project environment.

Q. Our objective of course is to fulfill the intent of a CMM level two organization. As a
possible solution, if we were to outline minimized guidelines for our small projects that
meet the intent of the level 2 KPAs, AND all small projects were required to follow those
guidelines, would an SEI assessment accept such an approach as satisfying the intent
of level 2? By minimized guidelines, for example, instead of a full project plan (using
MS Project for example), would a simple ten item task list suffice? Could formal
estimating be waived or replaced by a much simpler hours estimate provided by a
programmer?

A. Sounds pretty reasonable to me. The intent is to have a process that is documented,
consistently implemented, and a foundation for improvement. You're the best judge of
what a reasonable process in your environment is.

Q. I am in the middle of a software improvement project for the information systems
groups in our company. Our IS group would be considered small in the extreme by
CMM standards (less than 35 people) so we are having to do some extensive
interpretation of the key practices document.

What I am finding is the "Key Practices of the CMM" has the information that is needed
but we are finding it very difficult to translate that into solid policies and procedures.
This problem has been amplified by the fact that none of the members of the SEPG
group including me are professional policy authors. This has put into motion two
courses of action that I am responsible for. The first, I have started to search for books,
white papers, or organizations that have for sale their version of CMM approved
policies and/or procedures that could be tailored in their wording to meet our
requirements and still meet CMM requirements. The second, I am looking to find
information on CMM approved or at least CMM centric implementation methodologies
that can be purchased. Some that we have and are still evaluating are "The Guide" by
The Guide associates, "Perform" by Cap Gemini Sogeti, and "Navigator" by Ernst &

http://www.sei.cmu.edu/cmm/docs/q-and-a.4.html (10 of 20) [3/16/2004 4:42:28 PM]

Software CMM Q&A #4

Young.

A. The CMM has been successfully used by organizations as small as 20 folks before,
so size should not be a major problem - you just have to apply your judgment as to
what is appropriate in your area, given the guidance supplied by the CMM. Note that
the CMM has no "shall" statements. There is nothing that is mandatory in the sense of
a formal standard.

Policy statements are issued to set expectations on how a process should be
performed within the organization. You don't need to be a professional policy author to
say "we expect to do CM on every project - this includes identifying configuration items,
doing change control according to procedures X, Y, or Z, auditing baselines by
procedure X, base-lining according to the criteria in standard Y, etc."

You may or may not call out specific standards and procedures - depends on how often
you think they will be updated. You should identify training, procedures, and standards
that will help folks implement the policies that you're establishing.

It's not really complex. It's just hard to do consistently.

As far as off-the-shelf policies and tools are concerned, look at the IEEE and ISO
standards. They provide a lot of guidance. You can "buy policies", but in the long run
you'll need to tailor them to the needs of your business. You may do better to write your
own. There are several organizations selling such documents - rather than
recommending any specifically, I suggest you try to get a copy of the exhibitors from the
SEPG National Conference and the SEI Software Engineering Symposium (contact
customer-relations@sei.cmu.edu) and check them out. Similarly for tools, although the
case for automated support, so long as it's aligned with your existing processes, is a lot
cleaner.

Q. What is the definition of a smaller project? Is it based on: - the planned duration of
the project (i.e. less than 6 months)? - the estimated size of the software (i.e. less than
1000 L.O.C)? - the number of software development engineers assigned to the project
(i.e. less than 5 engineers)? 2. Would there be any tailoring of the CMM requirements
for software development projects of the following nature: - goal is proof of concept,
experimentation, demonstration, or prototype; - no external customer, in-house use
only.

Have the guidelines governing smaller projects been formalized in a tailored CMM or
other publication? If no formal guidelines are available, what generally accepted means
have been applied by other companies to deal with these kinds of situations?

A. Please note that in rating processes, the goals of the key process areas are the
normative component of the CMM. We believe that they are sufficiently general to be
applied in any size organization or project, although implementations may be radically
different. The key practices, subpractices, examples, and elaboration indicate what we
would typically expect to see in a large, contracting organization addressing those goals
(although they are also useful suggestions in many other environments). The specifics
of your questions are addressed in the tailoring report. See
ftp://ftp.sei.cmu.edu/pub/documents/94.reports/tr24.94.ps

Q. The approach I have led in my organization is to use the key practices for each level
2 KPA as a guideline. Our organization has evaluated each key practice and made a
conscious choice as to whether we will make certain that our actual implemented

http://www.sei.cmu.edu/cmm/docs/q-and-a.4.html (11 of 20) [3/16/2004 4:42:28 PM]

Software CMM Q&A #4

practices satisfy that key practice. In almost all cases, we felt that including the intent of
each key practice in our practices was beneficial. We have chosen to reject some key
practices, but in each case it was due to a belief that it was inappropriate for our
specific business practices. I primarily based this effort on a quote you forwarded once
before:

The relevant point, as Charlie Weber has pointed out, is whether you are tailoring a top-
level key practice or a sub-practice. To tailor a goal, you should sweat blood (and then
be conservative in mapping the relationship to "the" CMM). To tailor a key practice, you
should just sweat. To tailor a sub-practice, your conscience should hardly bother you.

Are we doing the right thing, or are we being far too rigorous? Are we taking too strict of
a view of the CMM?

A. I think you're doing absolutely the right thing. You're applying intelligence! Finding
the value! And I certainly want to encourage that!

At the same time, you cannot rate at the practice level without risking some severe
usability issues. CMM ratings are very conservative in terms of what is required, and
the application of professional judgement (as you are evidencing here) is critical to
interpreting the "right process" for your business environment. When we release v2, I
hope we'll fix this problem.

Common threads in the CMM

Q. I'm doing some work on an integration strategy/mapping of the CMM and Malcolm
Baldrige evaluation criteria. I am interested in knowing if there are any "officially" or
"unofficially" recognized common threads in the CMM (e.g., Measurement, Senior
Leadership Commitment & Sponsorship, Education & Training, etc.). I have reviewed
the Bell Canada TRILLIUM model, which does a good job of merging the concepts of
"maturity levels" with what they call "roadmaps". They have identified 28 common
threads, which is more than the average person can deal with. I'm looking for
approximately 7 +/- 2 of the major threads in the CMM. I have my own opinions, but am
interested in your thoughts (as the CMM authors) and the opinions of other experts
from the CMM community.

P.S. Adding the concept of threads to the CMM might be worth considering for Version
2.0. It would significantly enhance the usability of the model (especially for strategic
planning of SPI efforts). Just a thought.

From Mary Beth Chrissis:

In fact there are several themes that exist in the CMM. We have a module in the Intro
course that discusses each of them. This is not an exclusive list of themes, but it does
cover the major ones.

1. Continuous improvement -- The CMM focuses on defining processes that are
mature. An attribute of a mature process is that it is improvable. If you think about the
way the CMM and key process areas are defined, you will see a focus on continuous
improvement. Maturity levels build upon each other and key process areas have a set
of common features that help to insure that mature processes are defined.

2. Defined, documented, and used processes - You will see many practices that

http://www.sei.cmu.edu/cmm/docs/q-and-a.4.html (12 of 20) [3/16/2004 4:42:28 PM]

Software CMM Q&A #4

address defined, documented, and used. These practices are especially prevalent in
the Activities Performed common feature.

3. Commitment by senior management - This theme is contained primarily in the
Commitment to Perform common feature. Policy statements are included in each key
process area to address senior management sponsorship and commitment.

4. Stable processes - Processes must be stable and understood. Training helps to
stabilize a process. Training practices are contained in the Ability to Perform common
feature.

5. Measured processes - To objectively improve a process, it must be measured.
Product measures are usually contained in the Activities Performed common feature.
Measures of the process are contained in the Measurement and Analysis common
feature.

6. Controlled processes - Processes need to be controlled to insure that they are being
practiced as they are defined and documented. The Verifying Implementation common
feature and the Software Quality Assurance key process area makes ensure that
products and processes are verified and validated.

7. Process evolution - Processes evolve in the CMM. As processes improve, they will
change over time. An example of this is the project management process. Level 1
organizations really depend upon the project manager as the primary means of project
management. At level 2, Software Project Planning and Software Project Tracking and
Oversight key process areas are put into place to provide basic project management
processes for the projects. At level 3, Integrated Software Management takes the
project management processes from level 2 and develops the project's defined
software process based on the organization's standard software process. At level 4,
now that the project has a defined software process, data can be used to manage the
project. This is addressed by the Quantitative Process Management key process area.
The project manager has an expectation of how the project should perform prior to the
start of the project. At level 5, a project now has the proper foundation in place to fine
tune the project management process. This is addressed by the Process Change
Management key process area.

As you can see the common features provide the primary themes in the CMM. I hope
this addresses your question or at least points you in the right direction.

Incremental development

Q. I think I have found a major weakness in the CMM. I'd like to hear your viewpoint on
the matter. My CMM references are to SEI-91-TR-24.

The CMM does not emphasize incremental development of software systems. The term
is not used in the CMM documentation as far as I know. The closest thing to
"incremental development" that I find in the CMM is the mention of "serial build" in Level
2 Activity 5. The CMM seems to be neutral on the selection of the software life cycle. It
requires "predefined stages of manageable size". But "stage" is ambiguous in this
context. It could be taken to refer to a step in a process cycle rather than a complete
increment that ends in test.<> Incremental development has been identified as the most
important component of the Cleanroom method by the leader of (to my knowledge) the
largest Cleanroom project ever completed. ("OS32 and the Cleanroom", Proc. 1st
European Industrial Symp. Cleanroom Software Engineering, 1993).

http://www.sei.cmu.edu/cmm/docs/q-and-a.4.html (13 of 20) [3/16/2004 4:42:28 PM]

Software CMM Q&A #4

Terry Baker identified incremental development as the most important component of
structured programming for large systems. (I don't know where the widespread belief
that hierarchical, "go-to-less" module construction is the most important component of
structured programming got started.) ("Structured Programming in a Production
Programming Environment", IEEE Transactions on Software, Vol. SE-1, No. 2 1975, p.
105) Baker used the term "top-down development" rather than "incremental
development". In its historical context, "top-down development" is an ambiguous term.
In the 1970s, Baker and Harlan Mills tended to use the term "top-down development"
for what was, in reality, an evolving concept. Its meaning evolved from layered step-
wise refinement to incremental development during the 1970s. But, the context
provided in Baker's paper makes it clear that he was referring to the incremental
development of new software systems.

Also, incremental development (under the name "the Milestone process") is apparently
a key practice at Microsoft. (IEEE Software, Jan. 1995, p. 111).

Ironically, over a decade ago the proponents of incremental development identified two
impediments to its widespread use: (1) it is often precluded by contract regulations and
(2) it is often precluded by written development procedures, just the sort of regulations
and procedures that the CMM is designed to influence. The Baker paper (cited earlier)
describes ways to achieve incremental development in spite of government and
commercial contracts regulations. Yourdon ("Top-Down Design and Testing" 1979, in
"Software Design Strategies", Bergland, G. (editor), IEEE Computer Society Press,
1981, p. 60) found that in the organizations that had formal test procedures, those
procedures commonly precluded incremental development.

CMM Activity 5 Level 2 calls for selecting an appropriate life cycle, but Yourdon and
Baker have found that documents like the CMM have historically tended to obstruct the
selection of the most appropriate life cycle model for many systems.

Incremental development potentiates process control by increasing the number of
process cycles and the number of early opportunities to sample observed process
capabilities. Incremental development potentiates defect prevention by allowing
process defects to be identified in the early process cycles and eliminated.

The CMM calls for a incremental approach to process improvement, but it does not
encourage an incremental approach to software development.

Overall, I am a supporter of the CMM. But the omission of a single key practice could
greatly impact results.

What's your viewpoint on this matter?

A. I agree that software should be developed using some kind of evolutionary /
incremental build / spiral life cycle. I don't think waterfall is a very good life cycle model
for modern software projects.

The CMM does not, in general, prescribe how to solve specific problems. As you
observe, all it says is "pick a life cycle and use it." This is one example of a general
class of issues, where we have chosen to focus on what rather than how. There are
cases were waterfall is the best life cycle. We do not want the CMM to be overly
prescriptive.

http://www.sei.cmu.edu/cmm/docs/q-and-a.4.html (14 of 20) [3/16/2004 4:42:28 PM]

Software CMM Q&A #4

If you write this up as a change request, it will be formally reviewed, tracked, and
dispositioned. I would be interested in seeing the comments on such a proposed
change, because my own natural tendency agrees with you. Once we start selecting
how software projects should work, however, we're starting down a slippery path. What
about replacing testing/peer reviews with formal methods? What about specifying
inspections rather than the more general peer reviews? Why don't we recommend
OOD? Should all projects use QFD?

We do rely, to large degree, on organizations and projects making reasonable
decisions if they have a process that causes them to make the decision consciously.
That is a risky assumption in many ways, but I'm more comfortable with under-
specification than over-specification when it comes to an industry-wide "standard" such
as the CMM.

Incremental process improvement

Q. In the book Managing the Software Process, page 87, Section 6.2.1, regarding goals
and objectives, it states that one of the first rules of thumb is to implement the product
in small incremental steps, and to select each increment to support succeeding
increments. I have chosen SEI Level 2 as my first increment, and therefore I am
currently trying to clearly understand the difference between SEI Level 2 and SEI Level
3.

A. Actually, moving from Level 1 to Level 2 is a pretty big step. You may want to set
smaller goals. The CMM does not say what those should be; it may differ based on
your business environment. Empirically, the last KPAs that are mastered are
Requirements Management, Software Project Planning, and SQA. Emphasis on
MASTERED. When you do an assessment, the problems facing your organization
should fairly obvious. The challenge is in prioritizing which ones to tackle first; the
maturity levels give some good guidance that will help.

Legacy systems and maintenance documentation

Q. How would you handle a situation where a large proportion of the organization's
work load is legacy stuff and will continue to be so for the next couple of years? They
have defined a life cycle model which essentially skips the high level design phase;
thus they cannot answer yes to the PMM questions asking for traceability between top
level design and requirements (2.4.8) or detailed design (2.4.11). They have other work
which does follow "V" or Spiral SLCMs, but that is only about 35% of their work load
and would be represented by at most three of the five PLs. [My opinion is that they
should take the hit with No answers and hope that if 3 of 5 answers are Yes and they
otherwise qualify for Level 3, the team would assess them at 3. In addition I'd produce a
finding and a recommendation re creation of some re-engineered top level design
document which could then be referenced in the traceability chains.]

A. This is almost the exact opposite of what I found useful when I was programming. I
usually found that the detailed design was wrong and/or obsolete, but an accurate
architecture, plus the code, let me understand what was going on in the system (after
some study). I would agree with stating that, in this context, we don't do practices X, Y,
or Z. I would probably argue (if I felt it was true), that rather than answering NO, they
should be answered NOT APPLICABLE. You are definitely in a gray area here, where
judgment is going to be crucial in scoring KPA satisfaction and level achievement. I
would certainly ask the staff if they were having problems that were caused by the lack
of high-level design info, concentrating especially on new people coming in (training

http://www.sei.cmu.edu/cmm/docs/q-and-a.4.html (15 of 20) [3/16/2004 4:42:28 PM]

Software CMM Q&A #4

issue). I would also write a finding that this was a potential problem and outline the pros
and cons in doing something about it - both from a CMM scoring perspective and a
maintaining the system perspective.

Software project dynamics

Q. Is there a COST ESTIMATION model for CMM ? I mean, if I am an organization at
CMM level (x), how can I estimate the cost (in person months, not dollars) of moving to
level (x+1), x less than 5.

I have read SEI-94-TR-12, and familiar with SEI-93-TR-24 and 25.

A. There is not a model, per se, but there has been some work in "software project
dynamics" of modeling organizations at different maturity levels based on different
assumptions. Herb Krasner and Stan Rifkin have done some work in this area. There's
also a paper in American Programmer, Sept 1994, by Rubin, Johnson, and Yourdon on
the topic.

Not Applicable versus risk

Q. Another question is about the assessment of KPAs. If we have developed a written
policy and a documented process for a certain KPA, e.g., Subcontractor Management,
but the projects to be assessed do not have subcontractors, can we be considered to
achieving that KPA by assessment?

A. Yes, but it might be more appropriate to score SSM as Not Applicable or to explicitly
identify the risk if a new project will be doing extensive subcontracting, since there the
implementation has not been successfully demonstrated yet.

Discipline versus bureaucracy

Q. I have read CMM v1.1 carefully three times and discussed it with a group of my
colleagues. I have the following observation. In an informal development environment
such as the one here, the word "discipline" is easily and naturally read as "bureaucracy"
or "rigidity". Personally, I believe that given a project's complexity and criticality, there is
an appropriate level of formality which will optimize results.

The goal of CMM "Repeatable" Level seems to be to raise formality in order to conquer
problems of complexity. In other words, it seems to concern itself solely with
inappropriately LOW levels of formality. In "Managing the Software Process", Watts
Humphrey says something like "No bureaucracy can ever produce truly great
products.". Many of us have worked at one time or another in bureaucratic
organizations which seem to accomplish little real work, due to what looks like an
excess of process. What mechanisms exist in the CMM to reduce inappropriately high
levels of formality in a process?

In particular, how does the Level 1 organization use the CMM to find the right degree of
formality and not overshoot that goal? Is this a possible area for future development of
the model?

A. The only mechanism in the CMM that addresses your concern is the hierarchy of the
practices. There are no "shall" statements in the CMM, but to satisfy a key process area

http://www.sei.cmu.edu/cmm/docs/q-and-a.4.html (16 of 20) [3/16/2004 4:42:28 PM]

Software CMM Q&A #4

you have to satisfy each of the goals; to satisfy a maturity level you have to satisfy each
of its KPAs.

The KPAs and goals are very abstract, and I would argue that they apply in any size or
type of software project (with the exception of Software Subcontract Management if you
aren't doing subcontracting). As you move down in detail, e.g., the subpractices and
examples, you do move into a description of the normal behaviors we would expect to
see in large-scale, government contracting kinds of projects.

We explicitly state that you have to apply professional judgment in appropriately
applying the CMM as you move away from that specific context. Alternate
implementations are quite possible, and their adequacy should always be considered
with an open mind.

Because the CMM says what rather than how, you have to decide what the appropriate
level of formality is in your business environment. We can't give generic advice that
would apply to every conceivable user of the CMM beyond "apply intelligence." That
may seem smug, but it's very hard to provide objective criteria for process standards in
the software field (as Norm Fenton as pointed out).

When doing internal process improvement, this advice may be unsatisfactory. When
you're concerned with external evaluations, a la SCEs, it can be even more difficult.
The necessity is to be able to demonstrate to a neutral (in some cases, perhaps even
adversarial) party that you have satisfactorily addressed a KPA's concerns. This leads
to potential disagreements, i.e., reliability and consistency of evaluation issues, but in
the last 7 years we have been unable to identify a better compromise position.

So the bottom line is, it's your responsibility to use the CMM as guidance for improving
your process/evaluating contractors. You have to decide the appropriate degree of
formality and rigor within your business environment. Your customers, who are part of
your business environment, should share your "self-evaluation".

COTS

Q. How is the CMM applied to COTS software integration projects?

A. As appropriate :-) Certainly there are implementation concerns for COTS, but the
fundamental principles of planning, managing, communicating, etc., as described in the
goals of the KPAs would certainly apply - just ask yourself what is a reasonable
implementation of this practice or process for this project, and you won't go far wrong.

Q. How is the CMM applied to Professional Services projects?

A. Ditto.

Required overtime Q. One of the tenets of CMM (as I
understand it) is that as an organization moves up the
levels things are going to work better and the
organization will have "skilled, happy employees".
With the downsizing we are seeing a very different

http://www.sei.cmu.edu/cmm/docs/q-and-a.4.html (17 of 20) [3/16/2004 4:42:28 PM]

Software CMM Q&A #4

picture. The last major job to be awarded was to XXX.
When the award was announced it included 8 hours of
uncompensated overtime per week per employee. So
folks were immediately working 6 days a week for the
same pay they had been receiving for 5 days! Happy
campers they aren't. If a contractor had included this
in a bid several years ago the Source Selection Board
would have thrown out the proposal. This time they
not only took it they encouraged it. We are now in the
same mode for a much larger effort to support YYY.
There are a lot of very unsure software people here. It
is obvious this procurement may go the same way as
the last one. Some of these people are currently in
CMM self assessments. They are having a tough time
matching the CMM material with the world they live
in......

We have met the enemy and it is all of us! (apologies
to Pogo)

A. That's pretty terrible. I'm afraid that organizations
following this "improvement" tack are ignoring the
human side of process improvement that's critical to
continuous improvement. This sounds like just
another way of going to the lowest bidder, but using
SPI as an excuse to justify the low-ball. If this is more
than a temporary, one-shot deal then the best people
will leave for greener pastures - and they really will be
greener. If you want me to work round the clock, you
better offer to make me a millionaire so I can retire in
a few years - but I doubt that's your environment ;-)

I think I'd identify this as a finding in my next
assessment. Also, I have some neat comics that
describe this kind of "improvement" in a graphic way.
If you're around the SEI anytime I'm here, drop by and
see them.

http://www.sei.cmu.edu/cmm/docs/q-and-a.4.html (18 of 20) [3/16/2004 4:42:28 PM]

Software CMM Q&A #4

Methodologies

Q. What impact/effect do methodologies such as
Yourdon/DeMarco and TIs IEM have on the CMM
effort?

A. Essentially none. In the CMM we basically say "pick
a methodology that works well for you." The CMM
does not recommend any specific methodology, and I
don't believe that we have anything in the CMM
inspired by a particular methodology that is generally
valuable to all software efforts.

Q. How do "tools" such as TIs IEF, Finkelstein's IE
Advantage and ADW (to name a few) affect this
process? Do these products shorten the cycle, are
they an important part of the process or does SEI
recommend its own tools?

A. We do not recommend any specific tools. In
general, tools make you more productive, increase
quality, decrease cycle time, etc., when they are
integrated into a well-defined process. If they aren't
integrated, they become shelfware. Technology
transition of tools can be tricky; one needs to be
sensitive to process and cultural impacts of change.
No one, not even the SEI :-), can say "this is the right
tool/methodology that will solve all of the software
community's problems." (Even if there was a
technically superior answer, you'd still have to
consider the organization's processes and culture!)
SEI is not a tool vendor and we do not endorse any
specific tools or methods.

Regular versus periodic

Q. We were going through compliance requirements
attempting to make them more CMM-like in style and
kept running into the word "regular" and

http://www.sei.cmu.edu/cmm/docs/q-and-a.4.html (19 of 20) [3/16/2004 4:42:28 PM]

Software CMM Q&A #4

"periodically." So it occurred to us that perhaps the
CMM used one term consistently to convey the idea.
So we did a key word search and discovered that the
word "regular" occurs 15 times in the CMM and the
word "periodic" occurs 40 times.

A. There's no significant difference between regular
and periodic, as far as I recall. In fact, we tried to go to
"periodic" as the normal word; I don't remember if
"regular" appears for good reason or just because we
didn't catch it in the editing process. I did check that
it's only in subpractices. The other significant term is
"event-driven", so things can be either periodic or
event-driven.

Q. So our question is what, if any, difference does it
make which term is used?

A. Periodic is a little bit stronger in terms of "weekly"
or "monthly" kinds of implication. I'd probably pick
one that I was comfortable with (perhaps a bias to
periodic) and use it.

Return to top of the page

Return to main page

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2004 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/cmm/docs/q-and-a.4.html
Last Modified: 21 July 2003

http://www.sei.cmu.edu/cmm/docs/q-and-a.4.html (20 of 20) [3/16/2004 4:42:28 PM]

mailto:mcp@sei.cmu.edu?Subject=q-and-a.4.html
http://www.sei.cmu.edu/about/disclaimer.html

Questions and Answers on the CMM

Mark C. Paulk
Issue #4

7 April 1997

I am frequently asked questions on how to interpret the CMM in various
contexts. The following "newsletter" may be of general use. I have to caveat
these answers by saying that they represent my opinion and do not represent
official SEI positions. They have typically not been internally reviewed, but they
do represent a well-informed opinion on what the CMM means. The Q&A has
been sanitized for proper names (where appropriate), but it has not been cleaned
up for publication -- it's pretty much the off-the-cuff reply that folks have gotten
to their questions.

You are welcome to ask questions on the CMM. I do not guarantee quick
answers, although I'll try to get back to you as soon as possible. Sometimes that's
the same day I receive a question, sometimes it may be a month, depending on
my travel schedule and work load. I prefer to receive questions by e-mail. I will
lightly edit and sanitize question and answer before distribution in this
newsletter.
 Mark Paulk
 Software Engineering Institute
 Carnegie Mellon University
 Pittsburgh, PA 15213-3890
 Fax #: (412) 268-5758
 Internet: mcp@sei.cmu.edu

The questions in this issue are fairly general. Topics covered include:
 TQM and CMM
 Organizational analysis
 If the customer won't pay
 Tailoring
 Small projects
 Common threads in the CMM
 Incremental development
 Incremental process improvement
 Legacy systems and maintenance documentation
 Software project dynamics
 Not Applicable versus risk
 Discipline versus bureaucracy
 COTS
 Required overtime
 Methodologies
 Regular versus periodic

1

TQM and CMM

I would like to know what you think the relationships are between TQM and its
philosophies and the CMM. ... I have been reading more and more articles lately stating
the philosophies of Deming, Juran and Crosby are the basis for the CMM. I also am
seeing more articles, similar to yours, merging ISO 9000 and the CMM. I do not see
the connection to the TQM founders.

It seems to me a company could be ISO 9000 and CMM level 4 and be creating cement
rain coats. They may be the highest quality cement rain coats ever manufactured. They
may be manufactured with very mature processes. The company may be following all
their processes definitions right from the ISO 9000 guidelines. But what good is it if no
customers want cement rain coats.

TQM is customer focused. It has as its foundation the needs of society. Deming's point
is that healthy companies with healthy employees are necessary for the survival of a
society. What he documented with his 14 points and his 7 deadly diseases has little to do
with the CMM. Maybe one is about the why and the other is about the how.

The precepts and practices of TQM are essential.

The precepts and practices of the CMM are essential.

ISO 9000 certification seems to be becoming another essential.

These are all complimentary. They are also synergistic. They have some common points,
like continuous improvement, but that does not mean they have come from the same
place or are meant to do the same things. Good, logical, and practical solutions to
problems such as what TQM and the CMM are attempting to solve will overlap.

I am not very far along in this journey. I am very likely dead wrong.

What do you think the relationships are between TQM and its philosophies and the
CMM?

CMM only attacks the process side of TQM, and specifically for software
engineering, although the principles can be applied to any (engineering)
discipline.

There are some very important aspects of TQM that are deliberately not
addressed in the CMM. What value, for example, would the SEI add to a
discussion of the "people" issues? Is there anything that's software-specific about
"people"?

2

The obvious answer is no, yet we can add value in the software process arena,
while at the same time we should recognize the importance of the people issues
in enabling software process improvement.

As I said, we made a deliberate decision to focus on the area where we could
make a major contribution. Things change over time...

The desire of some organizations to have a "People CMM" to help them build
their human resource has led to the People CMM. The word software isn't
mentioned a whole lot... and it was written by HR-knowledgeable folks.

We are drafting a chapter for CMM v2 on interpersonal skills and organizational
change - not as key practices that describe maturity levels, but in the context of
enabling process improvement and pointing to better sources of information,
such as the P-CMM, Deming, etc. A lot of excellent work has been done by folks
much more knowledgeable than we about interpersonal skills!

We also don't (currently) talk about strategic business planning or customer
satisfaction explicitly, which are some of the other important TQM topics. We
may do something about those in CMM v2 also, but we are the _software_
engineering institute and need to stay focused on our primary mission, while not
ignoring the critical interdependencies - a difficult balance to maintain.

The CMM was inspired by Crosby's maturity grid, but it has evolved a lot over
the past several years. If you'd like to track it's evolution, you could read:

Mark C. Paulk, "The Evolution of the SEI's Capability Maturity Model for
Software," Software Process: Improvement and Practice, Vol. 1, Pilot Issue,
Spring 1995, pp. 3-15.

Will it cost as much to produce a product when on level 1/2/3/4 as it will producing the
equivalent product when on the level above? (Has any company really performed this
experiment? A 2 by 2 matrix?)

The ones who have data have demonstrated to their satisfaction that it's cheaper
and quicker to build products at a higher maturity level.

Or does the product automatically change when you produce it being on a
different/higher level?

That's a business decision. You have added opportunities on the
cost/functionality tradeoff curve.

Of course, the workers will give the product a higher subjective value. So does the
management, hence the selling price is likely to be higher.

3

Is the cost (as perceived by the manager) to produce a product knowing how the total cost
is distributed over all activities involved less than the perceived cost when nothing is
known about the cost distribution?

Will you charge the same for a s/w product when you're on level 2/3/4/5 as you charged
for an equivalent product (functionality perceived by the customer) when you were on
the level below?

That's a business decision.

If the cost of developing s/w products really decreases as you move up the CMM ladder,
how will you be looked upon by potential customers if you claim to sell/produce products
with the same quality as your competitors notably cheaper?

Almost by definition, it won't be the same quality and cheaper. It will have to be
higher quality and cheaper. You're forgetting rework costs. About 40% of
software project costs are in fixing bugs to get something shippable. If
appraisal/prevention permits you to build stuff for 30% less, by definition it's
going to be a higher quality product - see TQM literature.

I've been told that most companies decide to produce cheap products or high quality
products (read expensive). But there are some companies that try to sell/produce cheap
high quality products (called in-betweens?). How do these in-betweens perform on the
market compared to the other two?

Don't assume that all business decisions are consciously made ;-)

Also, don't assume that a Civic is a low-quality car just because it's cheap. It's a
high quality car (remember fitness for use!) targeted to an inexpensive market.
Quality /= luxury.

This is the classic misunderstanding of the quality movement. Before studying
the software process improvement world, study the TQM world. Read Deming
and Juran. SPI is an application of those more general concepts in the software
world.

I think that levels 2 and 3 are quite different/separate from levels 4 and 5. My view is
that levels 2 and 3 are parts of a larger goal, namely to stabilize the process(es). Ie, to
minimize the variance/deviation/fluctuations.

Levels 4 and 5, on the other hand, deal more with adjusting "the level/height of the
curve". This is just my opinion. Is it totally wrong? (Doesn't this imply that defect
prevention is misplaced at level 5? I don't know enough of the theory. I have lots and lots
of reading to do...)

4

Think of it as qualitative vs quantitative process control then process
improvement - which gives you 4 levels above level 1.

This means that you disagree with the basic principle of TQM. While I don't
particularly mind, it's a very old argument - that quality costs - that's been debated by
far abler folks than I.

I don't disagree. But, I think (it's just an uneducated opinion) it's reasonable to assume
that the levels 2 and 3 block will give a better "ROI" than t he upper block. Why?
Because it is probably easier and cheaper to remove the first errors.

Pick the low hanging fruit, as we say in the States.

Again, this goes back to the old "quality costs" debate. We're seeing so me of this
resurface under "good enough software". I have no problem with this concept so long as
you realize this is a "fitness for use" debate; when i t becomes operationalized as
"whatever junk we can get a customer to buy", I think the market will determine pretty
effectively.

I think I'm getting your point, but I'm not sure. Please, could you elaborate e this a bit?
I am having trouble remembering all the stuff all the time.

Analogy: GM said they built good cars and could point to domination of market
in 50's through early 70's as proof that they understood what was good enough.
The environment changed... and the companies that had focused on "quality"
made enormous inroads...

Do you think that all SE developers should try to achieve level 5? And, do you think that
they all have go "all the way", or do you think that companies like Microsoft necessarily
don't have to go as far as companies like LORAL Houston. Ie, can improvement/changes
be overdone?

Go as far as necessary. If you're level 3, you're world class today. What the
competition may inspire in the future, in terms of business reasons for continuing
to improve and how you improve, will determine your strategy later.

The ones who have data have demonstrated to their satisfaction that it's cheaper and
quicker to build products at a higher maturity level.

It is my opinion that there isn't conclusive proof, yet (At least I think I haven't seen any
proof). Intuitively, the CMM has to work! That is, I hope and think that quality is free
(maybe I should have said this in my first e-mail...). But, what I'm not sure about is that
"state-of-practice" quality is free. [You have to put this into my context: in Sweden
people cannot sue for astronomical amounts of money :-)]

5

The main problems are that I don't know how they came to the results. How do they
define/measure/calculate productivity for example? And, how do they
define/measure/calculate the cost and the return on changes that supposedly affect the
productivity (reprise)?

They defined it based on what they considered important in their environment -
which is always good advice. Their papers provide some details, but they're all
different.

Organizational analysis

Responding to a customer's request, here is the situation:

Large corporation with 6 sites around the country. The corporation has 8 major systems;
one at each site plus two sites with two each. The major systems make up ~60% of the
corporation's business. The corporation has a SPI effort that encompasses all 6 sites.

Their assessment plan is to assess a major system at each site (i.e, assess 6 representative
systems of the corporation). Assume: the assessment result is that the 6 systems assessed
are level 2. What can the corporation say:

a) That the corporation is a level 2 organization.

Possible, but I'm not really comfortable with it as stated. This isn't just a
sampling issue, they're really looking at six different sites with what is
presumably their best and brightest.

Are these development efforts? Maintenance projects? Operations?

What about the 2 missing major systems? Will this skew the perception of the
process? You can do ML2 diagnosis on individual projects without worrying
about organizational infrastructure, but if you're skipping 2 major systems, why?

b) That the major systems of the corporation operate at level 2.

It isn't the systems, it's the projects or sites that operate at ML2.

c) Nothing about being level 2 [if you say c), please explain your reasoning some].

They're violating a bunch of the organizational analysis heuristics, I think.
They're basically claiming the organization is the whole company, in spite of
geographical dispersion, possible major cultural differences, possible
deployment issues, etc. Who is the sponsoring manager of the SPI effort? Are
they directly funding SPI efforts at each site? Is there sponsorship physically
located at each site?

6

Major qualms about saying "we're ML2" in this kind of context. Certainly if we
"endorse" their statement, we should know a lot more.

Would you say something different if you were the lead assessor? i.e., what would say
about the results when reporting them (assume: you can't change the assessment
scenario, but feel free to add comments on how you would change it).

Tough question. This is also sampling issue, similar to 1 big project + bunch of
small ones. Issues of consistency and predictability can be significantly skewed
by outliers, whether more or less mature. What is the definition of "typical
project" for company?

I'd go for option C unless I knew a lot more about the assessment. For political
reasons, that may not be viable, but the existence of the political reasons
influences me to believe the organization is likely to be ML1 with ML2 on some
critical projects that get a lot of management attention.

Most of the CMM seems to deal with a single development organization, but many
companies have dozens of development organizations at a site, and try to get an SE I
rating for the entire site. This leaves a lot of questions unanswered.

My general comment on this is that it's a bad idea to overload organizations like
you're suggesting happens. I know that it happens also. Depending on why
you're going for an SEI rating, this can have very bad consequences: 1)
ineffective improvement, 2) an SCE team may not make the same mistake (it's
one of the reasons determined for some of the maturity level mismatches
between SCEs and SPAs several years ago), 3) going for a score rather than better
business value. Problems, any way you look at it.

However, I would comment that "dozens" seems like an exaggeration. "Several"
seems a better term and "few" might be even more appropriate. "One" is, I agree,
rare for sizable companies. Organizational analysis is one of the least well-
defined aspects of doing appraisals.

For example, During the analysis of data (step 3, Response Analysis, in your figure 4.1)
how do you handle an organization that "falls down" on key process areas in one group,
and scores well on those same KPAs in another group?

The organization "fails." The weakest link determines organizational maturity.
There are exceptions, e.g., legacy systems, but inconsistency of deployment is one
of the hallmarks of a level 1 organization. Every company (that survives) has
pockets of excellence. Organizational learning implies a lot more! In particular,
predictable implementation of a consistent process unless there are "external
drivers" otherwise.

7

In some organizations that I have worked for, they gave the full score because the y felt
that the capability existed somewhere in the organization.

There's an optimist in every crowd... rating processes is hard, but this is clearly
over the line of acceptable judgment.

In other places, I've seen them apply a weighting based on the amount of software
produced by each group.

I don't think that would work very well either. Is a small amount of life-critical
software less important than a large amount of MIS software? I don't think so...
that's one of the problems with algorithmic approaches -- and why I prefer
heuristics that warn an assessment team of the kinds of issues to be sensitive too,
but leaves the responsibility to the team to apply reasonable professional
judgment.

Personally, I feel that the purpose of the CMM/SCE is to identify and prioritize areas
needing improvement, and therefore the areas needing improvement need to be pointed
out as having geographical or other inconsistencies, and the scoring needs to be based on
the WORST rather than the best groups to place the proper management influence on
the problem areas.

Seems reasonable to me ;-)

However, no one (in Intel or Motorola for examples) would ever do it that way because it
reflects badly on them. I believe that this is because of a violation o f the spirit of the SEI,
and of Deming's beliefs (that metrics should never be used to rate people, just the
process).

I'll pass this along to some of our CBA IPI and SCE folks. I agree with you in
concept, although I don't know enough about your specific examples to judge.
Some of the toughest issues in assessment include:

- organizational analysis (what is the scope of an appraisal?)
- project sampling (what is a representative project? how many are

needed in appraisal?
- what are the "exceptions to the rule" that need to be thoughtfully

considered re their impact on process and organizational
capability? E.g., legacy systems, very small projects
(tasks), rapid prototyping projects,...

From James Hart:

There are (being somewhat realistic) a few requirements that must be met before
an organization of that size and geographical separation can say they are at ML 2.
For them to say they are at level 2, they must say this is true for ALL projects in

8

the organization, with only the exclusion of outliers (e.g., short duration projects,
2-3 man efforts, those outside the normal business direction). In order for them
to make this claim, then the projects must really be selected in a somewhat
random way. Preselection of 4-5 projects based on criteria OTHER THAN
PROCESS-RELATED will skew their results.

Second, you can only answer such questions as you ask in the context of why
they want to do an assessment. If it is to validate their level and make public the
results, they have potential problems with getting a REALITY-check. People will
say and report what they think management wants (or needs) to hear. Since they
wish to do a consolidated assessment (in essence, combining six assessments into
one), then it does not sound like they are interested primarily in identifying key
weaknesses.

Finally, projects selected for assessments only make up a major part of who is
talked to on an assessment. During interview sessions with personnel, you will
want to select those OUTSIDE of the projects selected. Their inputs will effect the
results, so you can't really say the assessments will only cover their major
systems. 60% of the business may not be 60% of the people or 60% coverage of
project processes.

In summary, I would personally not hold much faith in results of the kind
suggested. From experience, I have one data point: an organization wanted to
do an assessment over a very broad range of software developers. We did as
they wanted; but they were not happy with the results. The reason was due to
diversity in processes across the groups; each of the resulting findings were
issues for a PORTION of the assessment's scope, and NONE were
REPRESENTATIVE of issues the ORGANIZATION faced as a whole. They
subsequently sent 4-6 months following the assessment weeding through each of
the findings to determine what portions of the organization needed to address
what findings. Consolidating results across diverse areas leads to LESS
meaningful data.

A related point raised by Balzer: at L4-5, it may not be appropriate to focus on
specific practices these high-maturity companies use, but rather at the meta-level,
what it is they do with process capability. Bob's thesis (which I believe has merit
and which is consistent with a conversation we had with Curtis 3 years ago) is
that as organizations mature, their processes more-and-more reflect their product
and product family architectures and their important quality features - and these
in turn drive the specific features of interest in measuring the capability (my
paraphrase), so there may not be a lot of commonality in what is done at the
detailed practice level, but more likely at the level of what they do with
capability. This suggests the real enhancements at L4-5 may not be so much in
additional KPAs, but rather:

1) achieving the right level of detail on practices determining,
measuring, and manipulating process capability,

9

2) better examples (reflective of different product domains, etc.), and
3) making stronger meta-connects with business goals and needs.

If the customer won't pay

Here's a new one. Can an organization be rated Level 3 if a project does not comply with
Level 2 or 3 KPAs if their customer has specifically said he doesn't want to pay for
them? This is in a defense, contract based environment.

Yes, if it's a rare occurrence, but I would want to see a directive from the
customer that they refuse this functionality and accept the risk that it entails.
More generally, I would expect a company to "do the right thing" even if the
customer says don't do this -- to the extent that a supplier would charge MORE
for not doing SCM than for doing it (after all, the reasons for the KPAs are driven
by business concerns).

Tailoring

We have been trying to understand the applicability of the CMM to short cycle time
software support activities. We concluded that applying the CMM in all its rigor will
add to the cycle time of the support activity and possible customer dissatisfaction.

I am now thinking of formulating a support maturity model with the same five levels as
the CMM but with different key practices and KPA's.

Are there some guidelines to selecting KPA's and KP's for a maturity model? Is there a
generic process for this? Are there any references available? Any light you can throw on
this will be deeply appreciated.

A report on tailoring the CMM is going through the approval cycle now. It's by
Mark Ginsberg. Check with our customer relations people in January (customer-
relations@sei.cmu.edu) to see if it's been released and/or check the anonymous
ftp site for it (ftp.sei.cmu.edu, pub/cmm or pub/documents).

I would disagree with the idea of having different KPAs and claiming it's the
same maturity levels. I would strongly argue that all of the KPAs, with the
exception of subcontract management, apply in any software development or
maintenance environment. The implementation may differ dramatically, and so
arguing that different key practices may needed may be appropriate, but
organizations that have tailored the CMM for small projects observed that 90%+
of the key practices carried forward into that environment. Where you really get
large project/organization specific is in the subpractices. What is important is
mapping the concepts and roles of your environment to the concepts and roles in
the CMM. Once you establish that relationship, then analyze the applicability of
the practices.

10

I would also refer you to the first newsletter on tailoring the CMM.

I am an SQA member of the SEPG at ZZZ. Recently we have been attempting to
institute Level 2 process on smaller projects. I was reading through the CMM v1.1 (Feb
'93) document and came across the following paragraph:

The near-term focus on CMM development activities will be oriented towards tailored
versions of the CMM, such as a CMM for small projects and/or small organizations.
CMM v1.1 is expressed in terms of the normative practices of large, government
contracting organizations, and these practices must be tailored to the needs of
organizations that differ from this template.

Has a tailored version of the CMM addressing smaller projects been developed? If not,
has this issue been addressed to some degree in other publications? How can we obtain
such information?

We held a workshop on this topic a couple of years ago and concluded that there
was too much variation between small projects and organizations to justify a
CMM tailored specifically for the "small" environment. The challenges were
shared, in general, by "non-small" environments. A resident affiliate, Mark
Ginsberg, had come to the SEI to work on a CMM/small, but this changed the
direction more to tailoring in general. The ultimate result was

Mark Ginsberg and Lauren Quinn, "Process Tailoring and the Software
Capability Maturity Model," Software Engineering Institute, CMU/SEI-94-TR-
024, November 1995.

The Software Capability Maturity Model(sm) (SW-CMM[sm]) is serving as the
foundation for a major portion of the process improvement being undertaken in
the software industry. It is composed of two volumes: the Capability Maturity
Model for Software and the Key Practices of the Capability Maturity Model. The
key practices of the SW-CMM are expressed in terms that reflect normal practices
of organizations that work on large, government contracts. There is, however, a
significant population of software-producing and -acquiring organizations,
operating in different environments, for which the key practices require
significant interpretation and/or tailoring, prior to application. This report
presents a tailoring framework that identifies process artifacts, tailoring
processes, and their relationships to project artifacts, and explores the nature of
various kinds of tailoring used in the definition and development of software
process descriptions. Techniques appropriate to each type of tailoring are then
discussed. The general approach utilizes and builds upon the Software Process
Framework, whose purpose is to provide guidance for designing, analyzing, and
reviewing software processes for consistency with the SW-CMM.

Small projects

11

One of our major issues that continues to prevent us from reaching level 2: the degree of
flexibility we may or may not allow for our very small projects. Small projects can be
those that last one or two weeks and only have one or two people working on them.

 Specifically, for the very small projects, how much of the level 2 key practices within a
key process area can be waived? Taking the question a step further, can any KPAs, such
as SQA, be waived for our very small projects? We feel that it would be very near
impossible to have our small projects deliver a full project plan, risk analysis, SQA plan,
SCM plan, test plans for all levels of testing, and other similar such activities normally
provided by the larger projects.

Rather than saying waived, I'd say have radically different implementations. See
the first CMM newsletter on small projects. Certainly any key practice is subject
to radically different implementation in very small projects, but the general
concerns of each of the KPAs still need to be addressed, albeit at a different level.
Look at Watts Humphrey's new book A DISCIPLINE FOR SOFTWARE
ENGINEERING which applies the concepts at the level of the individual
professional for some thoughts on what the CMM ideas mean in the micro-
project environment.

 Our objective of course is to fulfill the intent of a CMM level two organization. As a
possible solution, if we were to outline minimized guidelines for our small projects that
meet the intent of the level 2 KPAs, AND all small projects were required to follow those
guidelines, would an SEI assessment accept such an approach as satisfying the intent of
level 2? By minimized guidelines, for example, instead of a full project plan (using MS
Project for example), would a simple ten item task list suffice? Could formal estimating
be waived or replaced by a much simpler hours estimate provided by a programmer?

Sounds pretty reasonable to me. The intent is to have a process that is
documented, consistently implemented, and a foundation for improvement.
You're the best judge of what a reasonable process in your environment is.

I am in the middle of a software improvement project for the information systems groups
in our company. Our IS group would be considered small in the extreme by CMM
standards (less than 35 people) so we are having to do some extensive interpretation of
the key practices document.

What I am finding is the "Key Practices of the CMM" has the information that is needed
but we are finding it very difficult to translate that into solid policies and procedures.
This problem has been amplified by the fact that none of the members of the SEPG group
including me are professional policy authors. This has put into motion two courses of
action that I am responsible for. The first, I have started to search for books, white
papers, or organizations that have for sale their version of CMM approved policies
and/or procedures that could be tailored in their wording to meet our requirements and
still meet CMM requirements. The second, I am looking to find information on CMM

12

approved or at least CMM centric implementation methodologies that can be purchased.
Some that we have and are still evaluating are "The Guide" by The Guide associates,
"Perform" by Cap Gemini Sogeti, and "Navigator" by Ernst & Young.

The CMM has been successfully used by organizations as small as 20 folks
before, so size should not be a major problem - you just have to apply your
judgment as to what is appropriate in your area, given the guidance supplied by
the CMM. Note that the CMM has no "shall" statements. There is nothing that is
mandatory in the sense of a formal standard.

Policy statements are issued to set expectations on how a process should be
performed within the organization. You don't need to be a professional policy
author to say "we expect to do CM on every project - this includes identifying
configuration items, doing change control according to procedures X, Y, or Z,
auditing baselines by procedure X, baselining according to the criteria in
standard Y, etc."

You may or may not call out specific standards and procedures - depends on
how often you think they will be updated. You should identify training,
procedures, and standards that will help folks implement the policies that you're
establishing.

It's not really complex. It's just hard to do consistently.

As far as off-the-shelf policies and tools are concerned, look at the IEEE and ISO
standards. They provide a lot of guidance. You can "buy policies", but in the
long run you'll need to tailor them to the needs of your business. You may do
better to write your own. There are several organizations selling such documents
- rather than recommending any specifically, I suggest you try to get a copy of
the exhibitors from the SEPG National Conference and the SEI Software
Engineering Symposium (contact customer-relations@sei.cmu.edu) and check
them out. Similarly for tools, although the case for automated support, so long
as it's aligned with your existing processes, is a lot cleaner.

What is the definition of a smaller project? Is it based on: - the planned duration of the
project (i.e. <6 months)? - the estimated size of the software (i.e. <1000 L.O.C)? - the
number of software development engineers assigned to the project (i.e.<5 engineers)? 2.
Would there be any tailoring of the CMM requirements for software development
projects of the following nature: - goal is proof of concept, experimentation,
demonstration, or prototype; - no external customer, in-house use only.

Have the guidelines governing smaller projects been formalized in a tailored CMM or
other publication? If no formal guidelines are available, what generally accepted means
have been applied by other companies to deal with these kinds of situations?

13

Please note that in rating processes, the goals of the key process areas are the
normative component of the CMM. We believe that they are sufficiently general
to be applied in any size organization or project, although implementations may
be radically different. The key practices, subpractices, examples, and elaboration
indicate what we would typically expect to see in a large, contracting
organization addressing those goals (although they are also useful suggestions in
many other environments). The specifics of your questions are addressed in the
tailoring report. See
ftp://ftp.sei.cmu.edu/pub/documents/94.reports/tr24.94.ps

The approach I have led in my organization is to use the key practices for each level 2
KPA as a guideline. Our organization has evaluated each key practice and made a
conscious choice as to whether we will make certain that our actual implemented
practices satisfy that key practice. In almost all cases, we felt that including the intent of
each key practice in our practices was beneficial. We have chosen to reject some key
practices, but in each case it was due to a belief that it was inappropriate for our specific
business practices. I primarily based this effort on a quote you forwarded once before:

 The relevant point, as Charlie Weber has pointed out, is whether you are tailoring a top-
level key practice or a subpractice. To tailor a goal, you should sweat blood (and then be
conservative in mapping the relationship to "the" CMM). To tailor a key practice, you
should just sweat. To tailor a subpractice, your conscience should hardly bother you.

Are we doing the right thing, or are we being far too rigorous? Are we taking too strict
of a view of the CMM?

I think you're doing absolutely the right thing. You're applying intelligence!
Finding the value! And I certainly want to encourage that!

At the same time, you cannot rate at the practice level without risking some
severe usability issues. CMM ratings are very conservative in terms of what is
required, and the application of professional judgement (as you are evidencing
here) is critical to interpreting the "right process" for your business environment.
When we release v2, I hope we'll fix this problem.

Common threads in the CMM

I'm doing some work on an integration strategy/mapping of the CMM and Malcolm
Baldrige evaluation criteria. I am interested in knowing if there are any "officially" or
"unofficially" recognized common threads in the CMM (e.g., Measurement, Senior
Leadership Commitment & Sponsorship, Education & Training, etc.). I have reviewed
the Bell Canada TRILLIUM model, which does a good job of merging the concepts of
"maturity levels" with what they call "roadmaps". They have identified 28 common
threads, which is more than the average person can deal with. I'm looking for
approximately 7 +/- 2 of the major threads in the CMM. I have my own opinions, but

14

am interested in your thoughts (as the CMM authors) and the opinions of other experts
from the CMM community.

P.S. Adding the concept of threads to the CMM might be worth considering for Version
2.0. It would significantly enhance the usability of the model (especially for strategic
planning of SPI efforts). Just a thought.

From Mary Beth Chrissis:

In fact there are several themes that exist in the CMM. We have a module in the
Intro course that discusses each of them. This is not an exclusive list of themes,
but it does cover the major ones.

1. Continuous improvement -- The CMM focuses on defining processes that are
mature. An attribute of a mature process is that it is improvable. If you think
about the way the CMM and key process areas are defined, you will see a focus
on continuos improvement. Maturity levels build upon each other and key
process areas have a set of common features that help to insure that mature
processes are defined.

2. Defined, documented, and used processes - You will see many practices that
address defined, documented, and used. These practices are especially
prevalent in the Activities Performed common feature.

3. Commitment by senior management - This theme is contained primarily in the
Commitment to Perform common feature. Policy statements are included in
each key process area to address senior management sponsorship and
commitment.

4. Stable processes - Processes must be stable and understood. Training helps to
stabilize a process. Training practices are contained in the Ability to Perform
common feature.

5. Measured processes - To objectively improve a process, it must be measured.
Product measures are usually contained in the Activities Performed common
feature. Measures of the process are contained in the Measurement and Analysis
common feature.

6. Controlled processes - Processes need to be controlled to insure that they are
being practiced as they are defined and documented. The Verifying
Implementation common feature and the Software Quality Assurance key
process area makes ensure that products and processes are verified and
validated.

7. Process evolution - Processes evolve in the CMM. As processes improve, they
will change over time. An example of this is the project management process.

15

Level 1 organizations really depend upon the project manager as the primary
means of project management. At level 2, Software Project Planning and
Software Project Tracking and Oversight key process areas are put into place to
provide basic project management processes for the projects. At level 3,
Integrated Software Management takes the project management processes from
level 2 and develops the project's defined software process based on the
organization's standard software process. At level 4, now that the project has a
defined software process, data can be used to manage the project. This is
addressed by the Quantitative Process Management key process area. The
project manager has an expectation of how the project should perform prior to
the start of the project. At level 5, a project now has the proper foundation in
place to fine tune the project management process. This is addressed by the
Process Change Management key process area.

As you can see the common features provide the primary themes in the CMM. I
hope this addresses your question or at least points you in the right direction.

Incremental development

I think I have found a major weakness in the CMM. I'd like to hear your viewpoint on
the matter. My CMM references are to SEI-91-TR-24.

The CMM does not emphasize incremental development of software systems. The term
is not used in the CMM documentation as far as I know. The closest thing to
"incremental development" that I find in the CMM is the mention of "serial build" in
Level 2 Activity 5. The CMM seems to be neutral on the selection of the software life
cycle. It requires "predefined stages of manageable size". But "stage" is ambiguous in
this context. It could be taken to refer to a step in a process cycle rather than a complete
increment that ends in test.

Incremental development has been identified as the most important component of the
Cleanroom method by the leader of (to my knowledge) the largest Cleanroom project ever
completed. ("OS32 and the Cleanroom", Proc. 1st European Industrial Symp.
Cleanroom Software Engineering, 1993).

Terry Baker identified incremental development as the most important component of
structured programming for large systems. (I don't know where the widespread belief
that hierarchical, "go-to-less" module construction is the most important component of
structured programming got started.) ("Structured Programming in a Production
Programming Environment", IEEE Transactions on Software, Vol. SE-1, No. 2 1975, p.
105) Baker used the term "top-down development" rather than "incremental
development". In its historical context, "top-down development" is an ambiguous term.
In the 1970s, Baker and Harlan Mills tended to use the term "top-down development"
for what was, in reality, an evolving concept. Its meaning evolved from layered step-wise
refinement to incremental development during the 1970s. But, the context provided in

16

Baker's paper makes it clear that he was referring to the incremental development of new
software systems.

Also, incremental development (under the name "the Milestone process") is apparently a
key practice at Microsoft. (IEEE Software, Jan. 1995, p. 111).

Ironically, over a decade ago the proponents of incremental development identified two
impediments to its widespread use: (1) it is often precluded by contract regulations and
(2) it is often precluded by written development procedures, just the sort of regulations
and procedures that the CMM is designed to influence. The Baker paper (cited earlier)
describes ways to achieve incremental development in spite of government and
commercial contracts regulations. Yourdon ("Top-Down Design and Testing" 1979, in
"Software Design Strategies", Bergland, G. (editor), IEEE Computer Society Press,
1981, p. 60) found that in the organizations that had formal test procedures, those
procedures commonly precluded incremental development.

CMM Activity 5 Level 2 calls for selecting an appropriate life cycle, but Yourdon and
Baker have found that documents like the CMM have historically tended to obstruct the
selection of the most appropriate life cycle model for many systems.

Incremental development potentiates process control by increasing the number of process
cycles and the number of early opportunities to sample observed process capabilities.
Incremental development potentiates defect prevention by allowing process defects to be
identified in the early process cycles and eliminated.

The CMM calls for a incremental approach to process improvement, but it does not
encourage an incremental approach to software development.

Overall, I am a supporter of the CMM. But the omission of a single key practice could
greatly impact results.

What's your viewpoint on this matter?

I agree that software should be developed using some kind of evolutionary /
incremental build / spiral life cycle. I don't think waterfall is a very good life
cycle model for modern software projects.

The CMM does not, in general, prescribe how to solve specific problems. As you
observe, all it says is "pick a life cycle and use it." This is one example of a
general class of issues, where we have chosen to focus on what rather than how.
There are cases were waterfall is the best life cycle. We do not want the CMM to
be overly prescriptive.

If you write this up as a change request, it will be formally reviewed, tracked,
and dispositioned. I would be interested in seeing the comments on such a
proposed change, because my own natural tendency agrees with you. Once we

17

start selecting how software projects should work, however, we're starting down
a slippery path. What about replacing testing/peer reviews with formal
methods? What about specifying inspections rather than the more general peer
reviews? Why don't we recommend OOD? Should all projects use QFD?

We do rely, to large degree, on organizations and projects making reasonable
decisions if they have a process that causes them to make the decision
consciously. That is a risky assumption in many ways, but I'm more comfortable
with under-specification than over-specification when it comes to an industry-
wide "standard" such as the CMM.

Incremental process improvement

 In the book Managing the Software Process, page 87, Section 6.2.1, regarding goals and
objectives, it states that one of the first rules of thumb is to implement the product in
small incremental steps, and to select each increment to support succeeding increments. I
have chosen SEI Level 2 as my first increment, and therefore I am currently trying to
clearly understand the difference between SEI Level 2 and SEI Level 3.

Actually, moving from Level 1 to Level 2 is a pretty big step. You may want to
set smaller goals. The CMM does not say what those should be; it may differ
based on your business environment. Empirically, the last KPAs that are
mastered are Requirements Management, Software Project Planning, and SQA.
Emphasis on MASTERED. When you do an assessment, the problems facing
your organization should fairly obvious. The challenge is in prioritizing which
ones to tackle first; the maturity levels give some good guidance that will help.

Legacy systems and maintenance documentation

How would you handle a situation where a large proportion of the organization's work
load is legacy stuff and will continue to be so for the next couple of years? They have
defined a life cycle model which essentially skips the high level design phase; thus they
cannot answer yes to the PMM questions asking for traceability between top level design
and requirements (2.4.8) or detailed design (2.4.11). They have other work which does
follow "V" or Spiral SLCMs, but that is only about 35% of their work load and would
be represented by at most three of the five PLs. [My opinion is that they should take the
hit with No answers and hope that if 3 of 5 answers are Yes and they otherwise qualify
for Level 3, the team would assess them at 3. In addition I'd produce a finding and a
recommendation re creation of some re-engineered top level design document which
could then be referenced in the traceability chains.]

This is almost the exact opposite of what I found useful when I was
programming. I usually found that the detailed design was wrong and/or
obsolete, but an accurate architecture, plus the code, let me understand what was
going on in the system (after some study). I would agree with stating that, in this
context, we don't do practices X, Y, or Z. I would probably argue (if I felt it was

18

true), that rather than answering NO, they should be answered NOT
APPLICABLE. You are definitely in a gray area here, where judgment is going to
be crucial in scoring KPA satisfaction and level achievement. I would certainly
ask the staff if they were having problems that were caused by the lack of high-
level design info, concentrating especially on new people coming in (training
issue). I would also write a finding that this was a potential problem and outline
the pros and cons in doing something about it - both from a CMM scoring
perspective and a maintaining the system perspective.

Software project dynamics

Is there a COST ESTIMATION model for CMM ? I mean, if I am an organization at
CMM level (x), how can I estimate the cost (in person months, not dollars) of moving to
level (x+1), x < 5.

I have read SEI-94-TR-12, and familiar with SEI-93-TR-24 and 25.

There is not a model, per se, but there has been some work in "software project
dynamics" of modeling organizations at different maturity levels based on
different assumptions. Herb Krasner and Stan Rifkin have done some work in
this area. There's also a paper in American Programmer, Sept 1994, by Rubin,
Johnson, and Yourdon on the topic.

Not Applicable versus risk

Another question is about the assessment of KPAs. If we have developed a written policy
and a documented process for a certain KPA, e.g., Subcontractor Management, but the
projects to be assessed do not have subcontractors, can we be considered to achieving
that KPA by assessment?

Yes, but it might be more appropriate to score SSM as Not Applicable or to
explicitly identify the risk if a new project will be doing extensive subcontracting,
since there the implementation has not been successfully demonstrated yet.

Discipline versus bureaucracy

I have read CMM v1.1 carefully three times and discussed it with a group of my
colleagues. I have the following observation. In an informal development environment
such as the one here, the word "discipline" is easily and naturally read as "bureaucracy"
or "rigidity". Personally, I believe that given a project's complexity and criticality, there
is an appropriate level of formality which will optimize results.

The goal of CMM "Repeatable" Level seems to be to raise formality in order to conquer
problems of complexity. In other words, it seems to concern itself solely with
inappropriately LOW levels of formality. In "Managing the Software Process", Watts
Humphrey says something like "No bureaucracy can ever produce truly great

19

products.". Many of us have worked at one time or another in bureaucratic
organizations which seem to accomplish little real work, due to what looks like an excess
of process. What mechanisms exist in the CMM to reduce inappropriately high levels of
formality in a process?

In particular, how does the Level 1 organization use the CMM to find the right degree of
formality and not overshoot that goal? Is this a possible area for future development of
the model?

The only mechanism in the CMM that addresses your concern is the hierarchy of
the practices. There are no "shall" statements in the CMM, but to satisfy a key
process area you have to satisfy each of the goals; to satisfy a maturity level you
have to satisfy each of its KPAs.

The KPAs and goals are very abstract, and I would argue that they apply in any
size or type of software project (with the exception of Software Subcontract
Management if you aren't doing subcontracting). As you move down in detail,
e.g., the subpractices and examples, you do move into a description of the
normal behaviors we would expect to see in large-scale, government contracting
kinds of projects.

We explicitly state that you have to apply professional judgment in appropriately
applying the CMM as you move away from that specific context. Alternate
implementations are quite possible, and their adequacy should always be
considered with an open mind.

Because the CMM says what rather than how, you have to decide what the
appropriate level of formality is in your business environment. We can't give
generic advice that would apply to every conceivable user of the CMM beyond
"apply intelligence." That may seem smug, but it's very hard to provide objective
criteria for process standards in the software field (as Norm Fenton as pointed
out).

When doing internal process improvement, this advice may be unsatisfactory.
When you're concerned with external evaluations, a la SCEs, it can be even more
difficult. The necessity is to be able to demonstrate to a neutral (in some cases,
perhaps even adversarial) party that you have satisfactorily addressed a KPA's
concerns. This leads to potential disagreements, i.e., reliability and consistency
of evaluation issues, but in the last 7 years we have been unable to identify a
better compromise position.

So the bottom line is, it's your responsibility to use the CMM as guidance for
improving your process/evaluating contractors. You have to decide the
appropriate degree of formality and rigor within your business environment.
Your customers, who are part of your business environment, should share your
"self-evaluation".

20

COTS

How is the CMM applied to COTS software integration projects?

As appropriate :-) Certainly there are implementation concerns for COTS, but
the fundamental principles of planning, managing, communicating, etc., as
described in the goals of the KPAs would certainly apply - just ask yourself what
is a reasonable implementation of this practice or process for this project, and
you won't go far wrong.

How is the CMM applied to Professional Services projects?

Ditto.

Required overtime

 One of the tenets of CMM (as I understand it) is that as an organization moves up the
levels things are going to work better and the organization will have "skilled, happy
employees". With the downsizing we are seeing a very different picture. The last major
job to be awarded was to XXX. When the award was announced it included 8 hours of
uncompensated overtime per week per employee. So folks were immediately working 6
days a week for the same pay they had been receiving for 5 days! Happy campers they
aren't. If a contractor had included this in a bid several years ago the Source Selection
Board would have thrown out the proposal. This time they not only took it they
encouraged it. We are now in the same mode for a much larger effort to support YYY.
There are a lot of very unsure software people here. It is obvious this procurement may
go the same way as the last one. Some of these people are currently in CMM self
assessments. They are having a tough time matching the CMM material with the world
they live in......

We have met the enemy and it is all of us! (apologies to Pogo)

That's pretty terrible. I'm afraid that organizations following this "improvement"
tack are ignoring the human side of process improvement that's critical to
continuous improvement. This sounds like just another way of going to the
lowest bidder, but using SPI as an excuse to justify the low-ball. If this is more
than a temporary, one-shot deal then the best people will leave for greener
pastures - and they really will be greener. If you want me to work round the
clock, you better offer to make me a millionaire so I can retire in a few years - but
I doubt that's your environment ;-)

I think I'd identify this as a finding in my next assessment. Also, I have some
neat comics that describe this kind of "improvement" in a graphic way. If you're
around the SEI anytime I'm here, drop by and see them.

21

Methodologies

What impact/effect do methodologies such as Yourdon/DeMarco and TIs IEM have on
the CMM effort?

Essentially none. In the CMM we basically say "pick a methodology that works
well for you." The CMM does not recommend any specific methodology, and I
don't believe that we have anything in the CMM inspired by a particular
methodology that is generally valuable to all software efforts.

How do "tools" such as TIs IEF, Finkelstein's IE Advantage and ADW (to name a few)
affect this process? Do these products shorten the cycle, are they an important part of
the process or does SEI recommend its own tools?

We do not recommend any specific tools. In general, tools make you more
productive, increase quality, decrease cycle time, etc., when they are integrated
into a well-defined process. If they aren't integrated, they become shelfware.
Technology transition of tools can be tricky; one needs to be sensitive to process
and cultural impacts of change. No one, not even the SEI :-), can say "this is the
right tool/methodology that will solve all of the software community's
problems." (Even if there was a technically superior answer, you'd still have to
consider the organization's processes and culture!) SEI is not a tool vendor and
we do not endorse any specific tools or methods.

Regular versus periodic

We were going through compliance requirements attempting to make them more CMM-
like in style and kept running into the word "regular" and "periodically." So it occurred
to us that perhaps the CMM used one term consistently to convey the idea. So we did a
key word search and discovered that the word "regular" occurs 15 times in the CMM
and the word "periodic" occurs 40 times.

There's no significant difference between regular and periodic, as far as I recall.
In fact, we tried to go to "periodic" as the normal word; I don't remember if
"regular" appears for good reason or just because we didn't catch it in the editing
process. I did check that it's only in subpractices. The other significant term is
"event-driven", so things can be either periodic or event-driven.

So our question is what, if any, difference does it make which term is used?

Periodic is a little bit stronger in terms of "weekly" or "monthly" kinds of
implication. I'd probably pick one that I was comfortable with (perhaps a bias to
periodic) and use it.

22

The Rational Planning of (Software) Projects

Mark C. Paulk
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA 15213-3890

U.S.A.

Abstract

The software crisis has persisted for decades. Our difficulties in planning and
managing software projects may be rooted in fundamental human nature, as
suggested by research in rational decision making, more than in the inherent
difficulty of building software. The Capability Maturity ModelSM for Software,
an application of the concepts of Total Quality Management to software
development and maintenance, embodies one approach for improving the
software process. The problems addressed by both the CMMSM and TQM seem
to lie in the basic ways that human beings think and organize themselves. In
many circumstances, normal human decision making can be characterized as
“irrational” because of systematic biases and fallacies in the way people make
decisions. Mechanisms such as those suggested by the CMM support rational
decision making.

1 Introduction

Over the last three decades we have heard many complaints about the “software
crisis.” In some software organizations, the typical software project is a year late
and double the budget. In a review of one DOD software organization’s 17 major
projects, the average 28-month schedule was missed by an average of 20 months.
A four year project was not delivered for seven years; no project was on time.

A recent Government Accounting Office (GAO) report /6/ on the major software
challenges states, “We have repeatedly reported on cost rising by millions of
dollars, schedule delays of not months but years, and multi-billion-dollar
systems that don't perform as envisioned.” The report summarizes over 20 GAO
case studies involving software or software-related problems in the military.
This report concludes, “The understanding of software as a product and of
software development as a process is not keeping pace with the growing
complexity and software dependence of existing and emerging mission-critical
systems.”

 This work is sponsored by the U.S. Department of Defense.
 CMM and Capability Maturity Model are service marks of Carnegie Mellon University.
 This paper was published in the Proceedings of the First World Congress for Software Quality,
San Francisco, CA, 20-22 June 1995, section 4.

Rational Planning Mark C. Paulk 1

Is it accurate, however, to refer to a situation as a crisis that has persisted for
decades? The software crisis is a chronic and severe problem that needs to be
addressed, but it does not seem to be acute.

Some software savants have suggested that in other disciplines, such as
construction, an estimate off by more than 6% is considered a disaster. Studies
indicate, however, that “in capital investment projects, the typical project finishes
late, comes in over budget when it is finally completed, and fails to achieve its
initial goals.” /10/ For the projects studied, the norm was for actual construction
costs to more than double first estimates.

The problems facing the software industry may be more ubiquitous than we
sometimes think. Many of the problems contributing to the software crisis derive
more from human nature and ability than they do from the inherent complexity
of software systems, daunting though that complexity may be. The “software
crisis” is not unique to the software industry.

A sizable body of literature on rational decision making and human foibles has
grown over the last few years. /1/ The purpose of this paper is to summarize
some of those results, how they apply to the planning of software projects, and
how the Capability Maturity Model for Software (CMM) /13, 14/ developed by
the Software Engineering Institute (SEI) can contribute to making rational
decisions, specifically when planning software projects.

2 Systematic Biases in Human Nature

Software engineering is a human-intensive, design-intensive endeavor. The
largest single factor in the success of software projects is the competence of the
people doing the work. People are fallible, however, and “an accumulating body
of recent research on clinical judgment, decision making, and probability
estimation has documented a substantial lack of ability across both individuals
and situations.” /4/

In this paper we shall concentrate on three general biases that all humans are
systematically subject to:

• people tend to be risk averse when there is a potential of loss
• people are unduly optimistic in their plans and forecasts
• people prefer to use intuitive judgment rather than (quantitative) models

Managers are people also, and these human tendencies apply to the managers
who make business decisions at the project to the executive level.

2.1 Problem: avoiding risk and uncertainty

In the business world, managers face contingencies they cannot predict and
outcomes they will not control, no matter how intelligent, educated, or
experienced they are. This variability can be characterized as risk. Managers

Rational Planning Mark C. Paulk 2

agree that risk taking is essential to success in decision making and an essential
component of the managerial role. /12/

According to game theory, decisions should be made that maximize expected
value. In reality, people are risk averse when dealing with the possibility of loss.
For many managers, studies indicate that losses loom about twice as large as
gains. /10/ Avoiding risk could be characterized as being prudent, but the
axiom “nothing ventured, nothing gained” also applies, especially in an
increasingly competitive world.

What are the some of the factors that drive conservatism? First, society1 values
risk taking, but not gambling, and society defines gambling as risk taking that
turns out badly. /12/ The results sort decision makers into winners and losers,
and society interprets these differences as reflecting differences in judgment and
ability, although events outside the individual’s control may have strongly
influenced success.

Second, the consequences of acting versus not acting are evaluated differently.
This biases decision makers toward passivity, even when passivity may not be in
their own best interests. /10/ In general, loss aversion favors conservatism and
inertia in decision making. When a manager takes a risk, it is often because of
optimistic denial rather than bold acceptance.

It is better, therefore, not to act than to act and be wrong; if you do act, you need
to be right. Since acting – taking risks – is an essential part of a manager’s job,
the conflict results in the denial of uncontrollable risks. Kahneman and Lovallo
state that “for managers, risk is a challenge to be overcome by the exercise of
skill, and the role of uncontrollable contingencies is to be denied or minimized.”
/10/ While some risks can be allowed for in planning, many other risks are
outside the control of an individual manager.

2.2 Problem: undue optimism

While there is a tendency for managers to be conservative, there is a
counterbalancing bias that people tend to be overly optimistic about what they
can do. Kahneman and Lovallo state that “there are three main forms of
pervasive optimistic bias: 1) unrealistically positive self-evaluations, 2)
unrealistic optimism about future events and plans, and 3) an illusion of control.”
/10/

When there is little effective feedback on how good a planning effort was,
judgments are not well calibrated. In one study, Einhorn and Hogarth comment

1 Society may not be the best term, but it seems the most general. March and Shapira use
“society” and “history.” An alternative would be “your company,” but that seems inappropriate.
Society as used here can be considered a term for any grouping of people.

Rational Planning Mark C. Paulk 3

that “self-confidence in judgments... was found to increase as a function of the
amount of information available... but without any corresponding increase in
judgmental accuracy.” /4/ We plan, we act, we replan, we react – and the
accuracy of the judgments that contribute to the rework become lost in the noise
of the ad hoc, chaotic environment of the typical project.

Managers also tend to ignore possible events that are very unlikely or very
remote, regardless of their consequences. /12/ Managers focus on a few possible
outcomes – the norm – rather than the whole distribution, and plan with respect
to those few points. This aspect of denying risk also leads to unrealistic
optimism.

Denial seems to be a common solution to many of the conflicting forces managers
have to deal with. As March and Shapira express it, “Managers focus on ways to
reduce the danger while retaining the gain. One simple action is to reject the
estimates.” /12/ This is hardly unknown in the software world. Proposal
managers have been known to cut a schedule by 25%, because the realistic bid
would not win the contract. Even after estimates have been developed and
revised, most managers believe they can do better than is expected. /12/

Undue optimism is perhaps not a major problem in the software world, though a
feeling of futility may be. Few experienced software managers claim great
confidence in their planned schedules, because of their experience with:

• volatile requirements. How closely will the system eventually built
correspond to the one originally planned?

• rapidly changing technology. Is the underlying technology likely to go
through one or more evolutionary advances during development?

• historical performance. How do we define good performance for a
software project? Within 50% of estimate?

2.3 Problem: relying on intuitive judgment

Denial of risk and optimism are much easier when there is nothing to rub your
nose in the facts. People resist documenting procedures and standards and using
quantitative models. Typical reasons include fear of bureaucracy and rigid
control of a dynamic process. These reasons are valid, if the process is poorly
implemented.

Managers are more comfortable with verbal characterizations of risk than with
numerical characterizations. March and Shapira found that “A majority... felt
that risk could not be captured by a single number or distribution, that
quantification of risks was not an easy task, ... there was no way to translate a
multidimensional phenomenon into one number... [but] everything should be
expressed in terms of the profit (or loss) at the end of the project.” /12/

Rational Planning Mark C. Paulk 4

Surveys of estimating practices in one organization /8/ indicate that disciplined
estimating approaches, such as Delphi techniques or cost models, are rarely used.
Variances are so large that there is a 30% probability that any one estimate can be
more than 50% off. The vast majority of projects are planned based on intuitive
judgment, and success is declared at the level of functionality present when the
schedule or money run out. This is a fairly common state of affairs in many
software development and maintenance environments.

The result of the intuitive approach to software estimating is that software
planning is frequently considered a wasted effort. We thus have the worst of
both possibilities mentioned by Einhorn and Hogarth: little judgmental accuracy
and little confidence in spite of (or because of) our experience. We cannot
address risk aversion and overoptimism biases without also dealing with also
addressing the systematic fallacies inherent in global intuitive judgment.

2.4 Summing up the problem

As Hihn and Habib-Agahi point out, “when a person is forced to plan under
severe schedule and budget constraints, planning consists mostly of a prioritized
list and a lot of optimistic promises.” /8/

Because most software organizations that we have observed (about 75%
according to the SEI’s 1994 data) do not use a disciplined approach, we
consistently see the results of poor project planning and management evidenced
as:

• unrealistic plans, based on optimistic estimates of what can be done (and
managerial pessimism regarding the bids that need to be proffered to win
a contract),

• ineffective tracking of performance, based on a lack of “measured insight”
into how a project is progressing (“rework happens” being the
confounding factor),

• volatile requirements that confound estimates and are incorporated into
the project in an ad hoc fashion, and

• risks that unexpectedly, but not unpredictably, become catastrophes.

Can we learn from experience? Can we control these natural tendencies in
human nature? Einhorn and Hogarth suggest that “the difficulty of learning
from experience has been traced back to three main factors: (a) lack of search for
and use of disconfirming evidence, (b) lack of awareness of environmental effects
on outcomes, and (c) the use of unaided memory for coding, storing, and
retrieving outcome information.” /4/

3 Controlling Human Nature

March and Shapira suggest that “it may be more efficacious to try to modify
managerial attention patterns and conceits than to try to change beliefs about the

Rational Planning Mark C. Paulk 5

likelihood of events or to try to induce preferences for high variance
alternatives.” /12/ An example of the impact of paying attention is that people
tend to optimize what is measured, which can confound the effectiveness of
measurement programs.

The SEI’s Capability Maturity Model for Software (CMM) recommends
institutionalizing measures and procedures based on historical performance and
statistical analysis as “the accepted way of doing business,” i.e., part of an
organizational culture. Tools and techniques, such as Delphi techniques and
estimation models, have been developed to give some degree of objectivity to
planning and overcome human frailty.

Specifically, the CMM recommends:
• documenting the way work is performed
• measuring its performance
• using data for controlling the performance
• planning based on historical performance
• training people

The CMM is structured into five maturity levels, which can be briefly described
as:

1) Initial The software process is characterized as ad hoc, and
occasionally even chaotic. Few processes are defined, and
success depends on individual effort and heroics.

2) Repeatable Basic project management processes are established to
track cost, schedule, and functionality. The necessary
process discipline is in place to repeat earlier successes on
projects with similar applications.

3) Defined The software process for both management and
engineering activities is documented, standardized, and
integrated into a standard software process for the
organization. All projects use an approved, tailored
version of the organization's standard software process for
developing and maintaining software.

4) Managed Detailed measures of the software process and product
quality are collected. Both the software process and
products are quantitatively understood and controlled.

5) Optimizing Continuous process improvement is enabled by
quantitative feedback from the process and from piloting
innovative ideas and technologies.

Rational Planning Mark C. Paulk 6

These maturity levels, in turn, are decomposed into 18 key process areas. This
paper concentrates on one of those areas: Software Project Planning. In the
balance of this paper we shall review some of the ways of dealing with the
systemic biases that people have and how the CMM can help with these biases.

3.1 Solution: dealing with risk and uncertainty

One of March and Shapira’s observations is that risk taking in organizations is
sustained more by personal than by organizational incentives. /12/
Organizational support in understanding and prioritizing risks can be a critical
component of empowering managers to deal with risk more effectively (note that
the CMM is a model for organizational improvement). Activity 13 of Software
Project Planning addresses identifying, assessing, and documenting software
risks.

Risk management may not be a precise science, but it is a reasonable approach to
controlling contingencies that, while they may not be predictable in detail, are
predictable in general. The exercise of documenting and tracking (foreseeable)
risks is valuable in keeping us from losing them below our attention threshold.

3.2 Solution: being realistic

Mechanisms such as those advocated by the CMM can help a manager be more
realistic in planning software projects. These include using documented
procedures and standards for estimating and planning and taking advantage of
historical performance data.

That does not remove the need to win the contract or to capture the customer, as
a necessary first step for doing business. Kahneman and Lovallo point out that
winning projects are more likely to be associated with optimistic errors. /10/
Time to market is a critical factor in the profitability of commercial products.
Being realistic does not imply not being aggressive.

Realistic here does mean that managers have to decide whether software
engineering is a “manageable” process. The CMM takes the position that it is
and advocates a particular approach for evolving the process capability of an
organization. This is not a unanimous view. Einhorn characterizes two possible
classes of error when making judgments. If people decide that a phenomenon is
systematic when it is random, the error that results is manifested in myths,
magic, superstitions, and illusions of control. If people decide that a
phenomenon is random when it is systematic, the error that results is manifested
in lost opportunities and illusions of the lack of control. /5/

Managers have to act in the absence of complete information, what the military
calls the “fog of war.” Documented procedures and standards can help focus

Rational Planning Mark C. Paulk 7

attention on issues that might otherwise be neglected; a logical complement is the
use of quantitative models to support the judgments that are made.

In the academic world, we can perform controlled experiments. The concept of a
control group is essential to the scientific method, but controlled experiments are
typically impractical in the real world. We can, however, capture feedback on
judgments, actions, process, environmental variables, and the resulting outcomes
in the real world, which is an essential part of improving judgment.

Human beings are fallible. Rational decision making depends on the tools
available to the decision maker. The rational, intelligent use of those tools
provides a means for organizational learning. There are three conditions for
learning: (1) feedback, which is necessary but not sufficient; (2) the ability to
rearrange cases so that hypotheses can be verified or discounted; and (3) the
ability to tally the accuracy of one’s hypotheses. /4/

3.3 Solution: using models

The literature is rife with studies that demonstrate the power of even simple
statistical models for combining information over the judgments of human
experts. /4/ Dawes, Faust, and Meehl compared the power of the clinical
method, where the decision-maker combines or processes information in his or
her head, and the actuarial method, where the human judge is eliminated and
conclusions rest solely on empirically established relations between data and the
condition or event of interest.2 Their conclusion was that the actuarial method is
almost unanimously equal or superior to the clinical method. In nearly all of the
comparative studies in the social sciences, the actuarial method has equaled or
surpassed the clinical method. /2/

This is not an intuitively obvious result. Studies /1, 2, 4, 10/ have demonstrated
that:

• simple statistical models based on human judges are more often correct
than the human judges they are based on3

• even when human judges are provided the outputs of the model and
allowed to use their discretion, relying uniformly on the actuarial
conclusions provides greater overall accuracy than the human judge4

2 Dawes, Faust, and Meehl state that “to be truly actuarial, interpretations must be both
automatic (that is, prespecified or routinized) and based on empirically established relations.”
They then go on to say that “virtually any type of data is amenable to actuarial interpretation.”
While the latter quote may be an overstatement, it certainly applies in the domain of software
project estimating.
3 One of the advantages of models is that you get consistent answers when given the same
inputs.
4 When operating freely, human judges apparently identify too many “exceptions.”

Rational Planning Mark C. Paulk 8

• optimal weighting of variables, so long as the sign of the coefficients are
correct, is not crucial to performing better than the human judge5

Kahneman and Lovallo explain this phenomenon in terms of inside and outside
views. /10/ An inside view forecast is generated by focusing on the case at
hand, by considering the plan and the obstacles to its completion, by constructing
scenarios of future progress, and by extrapolating current trends. An outside
view forecast focuses on the statistics of a class of cases chosen to be similar in
relevant respects to the present one. The critical question in both cases is
whether a to treat a particular problem as unique or as an instance of a class of
similar problems.

The inside view is overwhelmingly preferred in intuitive forecasting because it is
viewed as a serious attempt to come to grips with the complexities of the unique
case at hand. The outside view is rejected for relying on crude analogy from
superficially similar instances. Critics of software process management, who
emphasize the innovative, creative aspects of software engineering, are basically
arguing from the inside view.

Take a simple example. /5/ There is an urn with 60% red balls and 40% green
balls. Predict the color of balls as they are drawn from the urn. Knowing the
odds, most people use a rule that leads to predicting red 60% of the time and
green 40% of the time. That leads to 52% correct predictions (.060 * 0.60 + 0.40 *
0.40). The simple rule “always predict the most likely color” leads to 60% correct
predictions. Such a strategy deliberately accepts error, but when dealing with a
truly random process, it is the best selection rule.

The future of a long and complex undertaking is simply not foreseeable in detail.
The outside view is a conservative approach, which will fail to predict extreme
and exceptional events, but will do well with common ones; it is much more
likely to yield a realistic estimate. Its main advantage is that it avoids the snares
of scenario thinking.6

5 Optimal weights are specific to the population in which they were derived, and any advantage
gained in one setting may be lost when the same method is applied in another setting. Equally
weighted linear regression models can outpredict models with “optimal” weights on new cases if
there is poor data.
6 In scenario thinking, a sequence of events may be judged more probable than one of its
components. Dawes /1/ gives the example of an alcoholic tennis star who drinks a fifth a day
winning a major tournament versus an alcoholic tennis star who drinks a fifth a day, joins
Alcoholics Anonymous, quits drinking, and wins a major tournament. The probability of
winning is higher than the probability of (joining AA) * (quitting drinking) * (winning), yet the
sequence of events in the scenario sounds more plausible. The software planning equivalent
could be making an aggressive commitment and bringing the contract in on time and on budget
versus making the commitment, hiring highly competent people, providing powerful new tools
and methods, and bringing the contract in on time and on budget.

Rational Planning Mark C. Paulk 9

Dawes, Faust, and Meehl state that “although surpassing clinical methods,
actuarial procedures are far from infallible, sometimes achieving only modest
results.” /2/ This highlights a difficult problem in using such techniques –
people would rather remain ignorant of how bad their own judgment is than rely
on “mechanical” techniques where they are all too aware of the limitations.

Models are simplifications of the real world by definition. They can never
capture the richness and complexity of the real-world phenomenon they
describe; therefore there will be errors in prediction. Would we be willing to
accept such an obviously oversimplistic rule as “always predict the most likely
color” if we were gambling? If we were managing risks in a project that we were
responsible for?

Human beings do have a unique capacity to observe and make “atomic
judgments,” but this is not the same as a unique capacity to predict on the basis
of integration of observations. /2/ Human beings can build models, but when it
comes to consistently performing better than the models they have produced,
they are almost invariably unsuccessful – unless they “load the dice” by taking
action that makes their predictions come true.

March and Shapira argue that “it is entirely sensible for a manager to conclude
that the credibility of probability estimates is systematically less than is the
credibility of estimates of the value of an outcome, and it is certainly arguable
that the relative credibility of estimates should affect the relative attention paid to
them.” /12/ However, having a rational reason, rather than a gut feel, for
making managerial decisions provides a foundation for learning, both as
individuals and organizations.

3.4 Summing up a solution

There has been a consistent theme running through this discussion of controlling
human frailty:

• document how decisions are made
• provide guidance and quantifiable criteria where possible
• record decisions and the data used to make them
• analyze results and improve the process where possible
• learn – individually and organizationally

This is process management as advocated in the CMM. It is not a panacea to the
difficult problems of management, but it is a powerful approach to attacking
those problems.

March and Shapira argue that “We may prefer to have managers imagine
(sometimes falsely) that they can control their fates, rather than suffer the
consequences of their imagining (sometimes falsely) that they cannot.” /12/ Is
ignorance bliss?

Rational Planning Mark C. Paulk 10

As George Box said, “All models are wrong; some models are useful.” If the
models we use are successful, even if embedded in a human expert’s head, then
there is little demand for changing the current way of doing business. That is not
the case in the software world, as we have already shown. A strong need has
been expressed for improvement in the way we develop and maintain software.

4 Empirical Data and Experimentation

There are a number of case studies of software process improvement based on
the CMM /3, 9, 11, 15/. All indicate that predictability, control, and effectiveness
of processes can be significantly improved by improving the software process as
suggested by the CMM. The CMM, as argued in this paper, can help
organizations control natural human biases related to decision making.

The typical return on investment, based on data from organizations that have
done software process improvement for more than 3 years, is about 7:1, with an
average gain in productivity of 37% per year, an average 18% increase each year
in the proportion of defects found in pre-test, an average 19% reduction in time
to market, and an average 45% reduction in field error reports per year.

This is not a statistically rigorous analysis. The SEI began such an effort in 1993,
but it will require several years to develop rigorous evidence on the effects of
CMM-based improved efforts, although some initial results have been published.
/7/ That does not mean, however, that organizations cannot demonstrate the
value of these concepts more quickly.

As already mentioned, there is significant resistance in many organizations to the
concept of documented processes. They are viewed as being bureaucratic, rigid,
and stultifying. Although there are instances where such counter-productive
processes have been mandated by organizations, there are also instances where
powerful, empowering, effective processes have been developed and deployed
across organizations.

To overcome this resistance, it may be necessary to prototype and work our way
up in complexity and criticality. Most sizable organizations have a range of
software projects. Some are large, complex, and critical to the business. Others
are comparatively small and/or of little impact. Software professionals value the
concept of prototyping, so it seems reasonable to propose prototyping the use of
documented standards, procedures, and models. Champions can then be
identified, based on the success (or perhaps failure!) of the prototyping effort.

What would the confounding factors be? First, there might be a Hawthorne
effect. Second, we would primarily be using outcome information. For small
projects, it may be difficult to incorporate process feedback. Third, people will be
acting on the basis of the plans and estimates generated, which may confound

Rational Planning Mark C. Paulk 11

the results. Fourth, the customer is a critical component of the overall system.
An unreasonable customer can cripple the process.

5 Conclusion

As Kahneman and Lovallo suggest, facing the facts can be intolerably
demoralizing. A realistic view may not provide an acceptable basis for
continuing an ongoing project, but no one is willing to abandon the sunk costs
and draw the inescapable conclusion that the project should be scrapped – at
least until far more money has been expended than was originally anticipated.

Perhaps unfounded optimism is the only effective remedy against paralysis;
perhaps there is a genuine dilemma that will not yield to any simple rule.
Ignoring the issue puts us in the same position as the lost platoon in Weick’s
famous story that finds its way in the Alps by consulting a map of the Pyrenees.

The CMM provides a powerful tool for attacking our software management
problems. We may be horrified by how “bad” some of the solutions are – yet the
really terrifying observation may be that they are better than the current state of
affairs. They also provide a foundation for learning and improvement that is
currently lacking – and that is the critical driver for beginning the journey of
continuous process improvement.

References

1. Robyn M. Dawes, Rational Choice in an Uncertain World, Harcourt Brace
Jovanovich College Publishers, Orlando, FL, 1988.

2. Robyn M. Dawes, David Faust, and Paul E. Meehl, “Clinical Versus
Actuarial Judgment” Science, Vol. 243, 31 March 1989, pp. 1668-1674.

3. Raymond Dion, "Process Improvement and the Corporate Balance Sheet,"
IEEE Software, Vol. 10, No. 4, July 1993, pp. 28-35.

4. Hillel J. Einhorn and Robin M. Hogarth, “Confidence in Judgment:
Persistence of the Illusion of Validity,” Psychological Review, Vol. 85, No.
3, 1978, pp. 395-416.

5. Hillel J. Einhorn, “Accepting Error to Make Less Error,” Journal of
Personality Assessment, Vol. 50, No. 3, Fall 1986, pp. 387-395.

6. Mission-Critical Systems - Defense Attempting to Address Major Software
Changes, General Accounting Office, GAO/IMTEC-93-13, December 1992,
pp. 1-29.

Rational Planning Mark C. Paulk 12

7. James Herbsleb, Anita Carleton, et al., “Benefits of CMM-Based Software
Process Improvement: Initial Results,” Software Engineering Institute,
CMU/SEI-94-TR-13, August 1994.

8. J. Hihn and H. Habib-Agahi, "Cost Estimation of Software Intensive
Projects: A Survey of Current Practices," Proceedings of the 13th
International Conference on Software Engineering, Austin, TX, 13-17 May
1991, pp. 276-287.

9. Watts S. Humphrey, T.R. Snyder, and Ronald R. Willis, "Software Process
Improvement at Hughes Aircraft," IEEE Software, Vol. 8, No. 4, July 1991,
pp. 11-23.

10. Daniel Kahneman and Dan Lovallo, “Timid Decisions and Bold Forecasts:
A Cognitive Perspective on Risk Taking,” Proceedings of Conference on
Fundamental Issues in Strategy, Silverado, 1990.

11. W.H. Lipke and K.L. Butler, "Software Process Improvement: A Success
Story," Crosstalk: The Journal of Defense Software Engineering, No. 38,
November 1992, pp. 29-31.

12. James G. March and Zur Shapira, “Managerial Perspectives on Risk and
Risk Taking,” Management Science, Vol. 11, No. 11, November 1987, pp.
1404-1418.

13. M.C. Paulk, B. Curtis, M.B. Chrissis, and C.V. Weber, “Capability Maturity
Model for Software, Version 1.1,” Software Engineering Institute,
CMU/SEI-93-TR-24, DTIC Number ADA263403, February 1993.

14. M.C. Paulk, C.V. Weber, S. Garcia, M.B. Chrissis, and M. Bush, “Key
Practices of the Capability Maturity Model, Version 1.1,” Software
Engineering Institute, CMU/SEI-93-TR-25, DTIC Number ADA263432,
February 1993.

15. H. Wohlwend and S. Rosenbaum, "Software Improvements in an
International Company," Proceedings of the 15th International Conference of
Software Engineering, Washington D.C, May 1993.

Rational Planning Mark C. Paulk 13

Mapping of SW-CMM v1.1 to SE-CMM v1.1

SW-CMM v1.1 SE-CMM v1.1
2.1.0.1 RM.GO.1 requirements baseline
2.1.0.2 RM.GO.2 consistent with
requirements
2.1.1.1 RM.CO.1 RM policy
2.1.2.1 RM.AB.1 requirements allocation BP 02.06 Derive and Allocate

Requirements: Allocate Requirements
2.1.2.1 RM.AB.1 requirements allocation BP 03.04 Evolve System Architecture:

Develop Interface Requirements
2.1.2.1 RM.AB.1 requirements allocation BP 06.03 Understand Customer Needs

and Expectations: Develop System
Requirements

2.1.2.2 RM.AB.2 requirements
documented

BP 02.06 Derive and Allocate
Requirements: Allocate Requirements

2.1.2.2 RM.AB.2 requirements
documented

BP 06.01 Understand Customer Needs
and Expectations: Elicit Needs

2.1.2.2 RM.AB.2 requirements
documented

BP 06.03 Understand Customer Needs
and Expectations: Develop System
Requirements

2.1.2.3 RM.AB.3 RM resources
2.1.2.4 RM.AB.4 RM training
2.1.3.1 RM.AC.1 review allocated
requirements

BP 02.07 Derive and Allocate
Requirements: Ensure Requirement
Verifiability

2.1.3.2 RM.AC.2 use allocated
requirements
2.1.3.3 RM.AC.3 change allocated
requirements
2.1.4.1 RM.ME.1 measure RM status
2.1.5.1 RM.VE.1 senior management
review of RM
2.1.5.2 RM.VE.2 project manager review
of RM
2.1.5.3 RM.VE.3 SQA audits of RM
2.2.0.1 PP.GO.1 estimate
2.2.0.2 PP.GO.2 plan the project
2.2.0.3 PP.GO.3 establish commitments
2.2.1.01 PP.CO.1 project software
manager
2.2.1.02 PP.CO.2 SPP policy
2.2.2.01 PP.AB.1 statement of work

1

2.2.2.02 PP.AB.2 responsibilities for
planning
2.2.2.03 PP.AB.3 SPP resources
2.2.2.04 PP.AB.4 SPP training
2.2.3.01 PP.AC.1 participate on proposal BP 12.01 Plan Technical Effort: Identify

Critical Resources
2.2.3.01 PP.AC.1 participate on proposal BP 12.09 Plan Technical Effort: Develop

Technical Management Plan
2.2.3.02 PP.AC.2 initiate planning early BP 12.05 Plan Technical Effort: Identify

Technical Activities
2.2.3.02 PP.AC.2 initiate planning early BP 12.09 Plan Technical Effort: Develop

Technical Management Plan
2.2.3.03 PP.AC.3 participate in project
planning

BP 12.05 Plan Technical Effort: Identify
Technical Activities

2.2.3.03 PP.AC.3 participate in project
planning

BP 12.10 Plan Technical Effort: Review
Project Plans

2.2.3.04 PP.AC.4 senior management
reviews commitments

BP 12.06 Plan Technical Effort: Define
Project Interface

2.2.3.04 PP.AC.4 senior management
reviews commitments

BP 12.10 Plan Technical Effort: Review
Project Plans

2.2.3.05 PP.AC.5 software life cycle BP 12.04 Plan Technical Effort: Determine
Project Process

2.2.3.06 PP.AC.6 develop software
development plan
2.2.3.07 PP.AC.7 document software
development plan

BP 12.07 Plan Technical Effort: Develop
Project Schedules

2.2.3.08 PP.AC.8 identify work products
for control
2.2.3.09 PP.AC.9 estimate size
2.2.3.10 PP.AC.10 estimate effort and
costs

BP 12.03 Plan Technical Effort: Estimate
Project Costs

2.2.3.11 PP.AC.11 estimate critical
computer resources

BP 12.02 Plan Technical Effort: Estimate
Project Scope

2.2.3.11 PP.AC.11 estimate critical
computer resources

BP 12.08 Plan Technical Effort: Establish
Technical Parameters

2.2.3.12 PP.AC.12 develop schedule
2.2.3.13 PP.AC.13 identify risks BP 10.02 Manage Risk: Identify Risks
2.2.3.14 PP.AC.14 identify facilities and
support tools

BP 16.02 Manage Systems Engineering
Support Environment: Determine
Support Requirements

2.2.3.15 PP.AC.15 record planning data
2.2.4.1 PP.ME.1 measure SPP status
2.2.5.1 PP.VE.1 senior management
review of SPP

2

2.2.5.2 PP.VE.2 project manager review of
SPP
2.2.5.3 PP.VE.3 SQA audits of SPP
2.3.0.1 PT.GO.1 track
2.3.0.2 PT.GO.2 take corrective actions
2.3.0.3 PT.GO.3 agree to changes
2.3.1.1 PT.CO.1 project software manager
2.3.1.2 PT.CO.2 PTO policy
2.3.2.1 PT.AB.1 software development
plan
2.3.2.2 PT.AB.2 responsibility assigned
for work
2.3.2.3 PT.AB.3 PTO resources
2.3.2.4 PT.AB.4 PTO training
2.3.2.5 PT.AB.5 PTO orientation
2.3.3.01 PT.AC.1 use software
development plan

BP 11.01 Monitor and Control Technical
Effort: Direct Technical Effort

2.3.3.02 PT.AC.2 revise software
development plan
2.3.3.03 PT.AC.3 review commitments
with senior management

BP 11.01 Monitor and Control Technical
Effort: Direct Technical Effort

2.3.3.04 PT.AC.4 communicate changes to
commitments
2.3.3.05 PT.AC.5 track size BP 08.07 Ensure Quality: Mechanism for

corrective actions
2.3.3.06 PT.AC.6 track effort and costs BP 08.07 Ensure Quality: Mechanism for

corrective actions
2.3.3.06 PT.AC.6 track effort and costs BP 11.02 Monitor and Control Technical

Effort: Track Project Resources
2.3.3.06 PT.AC.6 track effort and costs BP 11.06 Monitor and Control Technical

Effort: Control Technical Effort
2.3.3.07 PT.AC.7 track critical computer
resources

BP 08.07 Ensure Quality: Mechanism for
corrective actions

2.3.3.08 PT.AC.8 track schedule BP 08.07 Ensure Quality: Mechanism for
corrective actions

2.3.3.08 PT.AC.8 track schedule BP 11.04 Monitor and Control Technical
Effort: Review Project Performance

2.3.3.09 PT.AC.9 track technical activities BP 08.07 Ensure Quality: Mechanism for
corrective actions

2.3.3.09 PT.AC.9 track technical activities BP 11.01 Monitor and Control Technical
Effort: Direct Technical Effort

2.3.3.09 PT.AC.9 track technical activities BP 11.03 Monitor and Control Technical
Effort: Track Technical Parameters

3

2.3.3.10 PT.AC.10 track risks BP 08.07 Ensure Quality: Mechanism for
corrective actions

2.3.3.11 PT.AC.11 record measurement
and replanning data
2.3.3.12 PT.AC.12 conduct internal
technical reviews

BP 08.07 Ensure Quality: Mechanism for
corrective actions

2.3.3.13 PT.AC.13 conduct formal reviews BP 06.05 Understand Customer Needs
and Expectations: Inform Customer

2.3.3.13 PT.AC.13 conduct formal reviews BP 08.07 Ensure Quality: Mechanism for
corrective actions

2.3.3.13 PT.AC.13 conduct formal reviews BP 11.05 Monitor and Control Technical
Effort: Analyze Project Issues

2.3.4.1 PT.ME.1 measure status of PTO
2.3.5.1 PT.VE.1 senior management
review of PTO

BP 11.05 Monitor and Control Technical
Effort: Analyze Project Issues

2.3.5.2 PT.VE.2 project manager review of
PTO

BP 11.05 Monitor and Control Technical
Effort: Analyze Project Issues

2.3.5.3 PT.VE.3 SQA audits of PTO BP 11.05 Monitor and Control Technical
Effort: Analyze Project Issues

2.4.0.1 SM.GO.1 select qualified
subcontractors
2.4.0.2 SM.GO.2 agree to subcontractor
commitments
2.4.0.3 SM.GO.3 maintain ongoing
communications
2.4.0.4 SM.GO.4 track performance of
subcontractors
2.4.1.1 SM.CO.1 SSM policy
2.4.1.2 SM.CO.2 subcontract manager
2.4.2.1 SM.AB.1 SSM resources
2.4.2.2 SM.AB.2 SSM training
2.4.2.3 SM.AB.3 SSM orientation
2.4.3.1 SM.AC.01 define work to be
subcontracted

BP 18.01 Coordinate with Suppliers:
Identify needed components

2.4.3.2 SM.AC.02 select subcontractor BP 18.02 Coordinate with Suppliers:
Identify suppliers

2.4.3.2 SM.AC.02 select subcontractor BP 18.03 Coordinate with Suppliers:
Choose suppliers

2.4.3.3 SM.AC.03 establish contractual
agreement
2.4.3.4 SM.AC.04 approve subcontractor's
plan
2.4.3.5 SM.AC.05 use subcontractor's plan

4

2.4.3.6 SM.AC.06 deploy changes to work BP 18.04 Coordinate with Suppliers:
Provide needs

2.4.3.7 SM.AC.07 conduct
status/coordination reviews

BP 18.05 Coordinate with Suppliers:
Maintain communication

2.4.3.8 SM.AC.08 conduct technical
interchanges

BP 18.05 Coordinate with Suppliers:
Maintain communication

2.4.3.9 SM.AC.09 conduct formal reviews BP 18.05 Coordinate with Suppliers:
Maintain communication

2.4.3.10 SM.AC.10 SQA monitoring of
subcontractor
2.4.3.11 SM.AC.11 SCM monitoring of
subcontractor
2.4.3.12 SM.AC.12 acceptance testing of
subcontracted product
2.4.3.13 SM.AC.13 evaluate subcontractor
performance
2.4.4.1 SM.ME.1 measure status of SSM
2.4.5.1 SM.VE.1 senior management
review of SSM
2.4.5.2 SM.VE.2 project manager review
of SSM
2.4.5.3 SM.VE.3 SQA audits of SSM
2.5.0.1 QA.GO.1 plan SQA
2.5.0.2 QA.GO.2 verify adherence
2.5.0.3 QA.GO.3 inform of SQA
2.5.0.4 QA.GO.4 resolve noncompliance
2.5.1.1 QA.CO.1 SQA policy
2.5.2.1 QA.AB.1 SQA group
2.5.2.2 QA.AB.2 SQA resources
2.5.2.3 QA.AB.3 SQA training
2.5.2.4 QA.AB.4 SQA orientation
2.5.3.1 QA.AC.1 develop SQA plan
2.5.3.2 QA.AC.2 use SQA plan
2.5.3.3 QA.AC.3 participate in plans,
standards, and procedures
2.5.3.4 QA.AC.4 review activities BP 08.01 Ensure Quality: Monitor

Conformance to the Defined Process
2.5.3.4 QA.AC.4 review activities BP 08.01 Monitor Conformance to the

Defined Process
2.5.3.5 QA.AC.5 audit designated work
products

BP 08.02 Ensure Quality: Measure
Quality of the Work Product

2.5.3.6 QA.AC.6 report results to software
engineering
2.5.3.7 QA.AC.7 handle deviations

5

2.5.3.8 QA.AC.8 interact with customer
SQA
2.5.4.1 QA.ME.1 measure SQA status
2.5.5.1 QA.VE.1 senior management
review of SQA
2.5.5.2 QA.VE.2 project manager review
of SQA
2.5.5.3 QA.VE.3 independent expert
audits of SQA
2.6.0.1 CM.GO.1 plan SCM
2.6.0.2 CM.GO.2 identify and control
work products
2.6.0.3 CM.GO.3 control changes
2.6.0.4 CM.GO.4 inform of SCM
2.6.1.1 CM.CO.1 SCM policy
2.6.2.1 CM.AB.1 control board
2.6.2.2 CM.AB.2 SCM group
2.6.2.3 CM.AB.3 SCM resources
2.6.2.4 CM.AB.4 SCM training
2.6.2.5 CM.AB.5 engineer SCM training
2.6.3.01 CM.AC.1 develop SCM plan BP 09.01 Manage Configurations:

Establish Configuration Management
Methodology

2.6.3.02 CM.AC.2 use SCM plan
2.6.3.03 CM.AC.3 establish configuration
management library system

BP 09.03 Manage Configurations:
Maintain Configuration Data

2.6.3.03 CM.AC.3 establish configuration
management library system

BP 09.05 Manage Configurations:
Communicate Configuration Status

2.6.3.04 CM.AC.4 identify configuration BP 09.02 Manage Configurations: Identify
Configuration Units

2.6.3.05 CM.AC.5 address change
requests and problem reports

BP 08.07 Ensure Quality: Mechanism for
corrective actions

2.6.3.06 CM.AC.6 control changes BP 09.04 Manage Configurations: Control
Changes

2.6.3.07 CM.AC.7 release products
2.6.3.08 CM.AC.8 record configuration
status
2.6.3.09 CM.AC.9 report configuration
status
2.6.3.10 CM.AC.10 audit configuration
(baseline)
2.6.4.1 CM.ME.1 measure status of SCM
2.6.5.1 CM.VE.1 senior management
review of SCM

6

2.6.5.2 CM.VE.2 project manager review
of SCM
2.6.5.3 CM.VE.3 configuration audits
2.6.5.4 CM.VE.4 SQA audits of SCM
3.1.0.1 PF.GO.1 coordinate improvement
3.1.0.2 PF.GO.2 assess strengths and
weaknesses
3.1.0.3 PF.GO.3 plan process
improvement
3.1.1.1 PF.CO.1 OPF policy
3.1.1.2 PF.CO.2 senior management
sponsorship of OPF
3.1.1.3 PF.CO.3 senior management
oversight of OPF
3.1.2.1 PF.AB.1 process group
3.1.2.2 PF.AB.2 OPF resources
3.1.2.3 PF.AB.3 required OPF training
3.1.2.4 PF.AB.4 OPF orientation
3.1.3.1 PF.AC.1 assess process BP 08.06 Ensure Quality: Initiate Quality

Improvement Activities
3.1.3.1 PF.AC.1 assess process BP 14.01 Improve Organization's Systems

Engineering Processes: Appraise the
Process

3.1.3.2 PF.AC.2 develop OPF plan BP 13.01 Define Organization's Systems
Engineering Process: Establish Process
Goals

3.1.3.3 PF.AC.3 coordinate improvement
3.1.3.4 PF.AC.4 coordinate organization's
software process database

BP 13.02 Define Organization's Systems
Engineering Process: Collect Process
Assets

3.1.3.5 PF.AC.5 evaluate new processes,
methods, and tools

BP 13.02 Define Organization's Systems
Engineering Process: Collect Process
Assets

3.1.3.5 PF.AC.5 evaluate new processes,
methods, and tools

BP 14.04 Improve Organization's Systems
Engineering Processes: Communicate
Process Improvements

3.1.3.6 PF.AC.6 coordinate process
training
3.1.3.7 PF.AC.7 inform implementers BP 13.02 Define Organization's Systems

Engineering Process: Collect Process
Assets

3.1.3.7 PF.AC.7 inform implementers BP 14.04 Improve Organization's Systems
Engineering Processes: Communicate
Process Improvements

7

3.1.3.7 PF.AC.7 inform implementers BP 16.07 Manage Systems Engineering
Support Environment: Monitor Systems
Engineering Support Environment

3.1.4.1 PF.ME.1 measure status of OPF
3.1.5.1 PF.VE.1 senior management
review of OPF
3.2.0.1 PD.GO.1 establish standard
software process for organization
3.2.0.2 PD.GO.2 inform on OPD
3.2.1.1 PD.CO.1 OPD policy
3.2.2.1 PD.AB.1 OPD resources
3.2.2.2 PD.AB.2 required OPD training
3.2.3.1 PD.AC.1 develop organization's
standard software process

BP 13.03 Define Organization's Systems
Engineering Process: Develop
Organization's Systems Engineering
Process

3.2.3.2 PD.AC.2 document organization's
standard software process
3.2.3.3 PD.AC.3 specify software life
cycles
3.2.3.4 PD.AC.4 provide tailoring
guidelines

BP 13.04 Define Organization's Systems
Engineering Process: Define Tailoring
Guidelines

3.2.3.4 PD.AC.4 provide tailoring
guidelines

BP 16.04 Manage Systems Engineering
Support Environment: Tailor Systems
Engineering Support Environment

3.2.3.5 PD.AC.5 establish organization's
software process database
3.2.3.6 PD.AC.6 establish library of
software process-related documentation
3.2.4.1 PD.ME.1 measure status of OPD
3.2.5.1 PD.VE.1 SQA audits of OPD
3.3.0.1 TP.GO.1 plan training
3.3.0.2 TP.GO.2 provide skills training
3.3.0.3 TP.GO.3 provide role training
3.3.1.1 TP.CO.1 TP policy
3.3.2.1 TP.AB.1 training group
3.3.2.2 TP.AB.2 TP resources
3.3.2.3 TP.AB.3 skills and knowledge
(required training)
3.3.2.4 TP.AB.4 TP orientation
3.3.3.1 TP.AC.1 develop project training
plan

BP 17.01 Provide Ongoing Skills and
Knowledge: Identify needed skills

8

3.3.3.2 TP.AC.2 develop organization
training plan

BP 17.01 Provide Ongoing Skills and
Knowledge: Identify needed skills

3.3.3.3 TP.AC.3 use TP plan BP 17.05 Provide Ongoing Skills and
Knowledge: Train Personnel

3.3.3.4 TP.AC.4 develop organizational
training

BP 17.04 Provide Ongoing Skills and
Knowledge: Prepare Training Materials

3.3.3.4 TP.AC.4 develop organizational
training

BP 17.08 Provide Ongoing Skills and
Knowledge: Maintain Training Materials

3.3.3.5 TP.AC.5 establish training waivers
3.3.3.6 TP.AC.6 maintain training records BP 17.07 Provide Ongoing Skills and

Knowledge: Maintain Training Records
3.3.4.1 TP.ME.1 measure status of TP
3.3.4.2 TP.ME.2 measure quality of
training

BP 17.06 Provide Ongoing Skills and
Knowledge: Assess Training
Effectiveness

3.3.5.1 TP.VE.1 senior management
review of TP
3.3.5.2 TP.VE.2 independent evaluation of
TP

BP 17.06 Provide Ongoing Skills and
Knowledge: Assess Training
Effectiveness

3.3.5.3 TP.VE.3 audits (QA) of TP BP 17.06 Provide Ongoing Skills and
Knowledge: Assess Training
Effectiveness

3.4.0.1 IM.GO.1 tailor defined process
3.4.0.2 IM.GO.2 plan defined process
3.4.1.1 IM.CO.1 ISM policy
3.4.2.1 IM.AB.1 ISM resources
3.4.2.2 IM.AB.2 required training in
tailoring
3.4.2.3 IM.AB.3 required training in
management
3.4.3.01 IM.AC.1 develop defined process
3.4.3.02 IM.AC.2 revise defined process
3.4.3.03 IM.AC.3 plan defined process
3.4.3.04 IM.AC.4 use defined process
3.4.3.05 IM.AC.5 use organization's
software process database
3.4.3.06 IM.AC.6 manage size
3.4.3.07 IM.AC.7 manage effort and costs
3.4.3.08 IM.AC.8 manage critical
computer resources
3.4.3.09 IM.AC.9 manage critical
dependencies

9

3.4.3.10 IM.AC.10 manage risks BP 10.01 Manage Risk: Develop Risk
Management Approach

3.4.3.10 IM.AC.10 manage risks BP 10.02 Manage Risk: Identify Risks
3.4.3.10 IM.AC.10 manage risks BP 10.03 Manage Risk: Assess Risks
3.4.3.10 IM.AC.10 manage risks BP 10.04 Manage Risk: Review Risk

Assessment
3.4.3.10 IM.AC.10 manage risks BP 10.05 Manage Risk: Execute Risk

Mitigations
3.4.3.10 IM.AC.10 manage risks BP 10.06 Manage Risk: Track Risk

Mitigations
3.4.3.11 IM.AC.11 take corrective action
3.4.4.1 IM.ME.1 measure effectiveness of
defined process
3.4.5.1 IM.VE.1 senior management
review of project
3.4.5.2 IM.VE.2 project manager review of
project
3.4.5.3 IM.VE.3 SQA audits of ISM
3.5.0.1 PE.GO.1 define engineering tasks
3.5.0.2 PE.GO.2 maintain consistent work
products
3.5.1.1 PE.CO.1 SPE policy
3.5.2.1 PE.AB.1 SPE resources BP 16.03 Manage Systems Engineering

Support Environment: Obtain Systems
Engineering Support Environment

3.5.2.1 PE.AB.1 SPE resources BP 16.06 Manage Systems Engineering
Support Environment: Maintain
Environment

3.5.2.2 PE.AB.2 required SPE training
3.5.2.3 PE.AB.3 SPE orientation for
engineers
3.5.2.4 PE.AB.4 SPE orientation for
managers
3.5.3.01 PE.AC.1 integrate methods and
tools

BP 16.01 Manage Systems Engineering
Support Environment: Maintain
Technical Awareness

3.5.3.01 PE.AC.1 integrate methods and
tools

BP 16.02 Manage Systems Engineering
Support Environment: Determine
Support Requirements

3.5.3.02 PE.AC.2 analyze software
requirements

BP 06.02 Understand Customer Needs
and Expectations: Analyze Needs

3.5.3.02 PE.AC.2 analyze software
requirements

BP 06.03 Understand Customer Needs
and Expectations: Develop System
Requirements

10

3.5.3.02 PE.AC.2 analyze software
requirements

BP 06.04 Understand Customer Needs
and Expectations: Obtain Concurrence

3.5.3.03 PE.AC.3 develop software design
3.5.3.04 PE.AC.4 develop software code
3.5.3.05 PE.AC.5 perform testing BP 07.01 Verify and Validate System:

Establish Verification and Validation
Plans

3.5.3.06 PE.AC.6 perform integration
testing

BP 05.05 Integrate System: Verify System
Element Interfaces

3.5.3.06 PE.AC.6 perform integration
testing

BP 07.02 Verify and Validate System:
Define Incremental Verification

3.5.3.07 PE.AC.7 perform system and
acceptance testing

BP 05.06 Integrate System: Assemble
Aggregates of System Elements

3.5.3.07 PE.AC.7 perform system and
acceptance testing

BP 05.07 Integrate System: Check
Aggregates of System Elements

3.5.3.07 PE.AC.7 perform system and
acceptance testing

BP 07.01 Verify and Validate System:
Establish Verification and Validation
Plans

3.5.3.07 PE.AC.7 perform system and
acceptance testing

BP 07.03 Verify and Validate System:
Define System Verification

3.5.3.07 PE.AC.7 perform system and
acceptance testing

BP 07.04 Verify and Validate System:
Define Validation

3.5.3.07 PE.AC.7 perform system and
acceptance testing

BP 07.05 Verify and Validate System:
Perform and Capture Verification and
Validation

3.5.3.08 PE.AC.8 develop documentation
3.5.3.09 PE.AC.9 collect defect data
3.5.3.10 PE.AC.10 maintain consistency
across work products

BP 02.09 Derive and Allocate
Requirements: Capture Results and
Rationale

3.5.4.1 PE.ME.1 measure functionality
and quality

BP 11.03 Monitor and Control Technical
Effort: Track Technical Parameters

3.5.4.2 PE.ME.2 measure status of SPE
3.5.5.1 PE.VE.1 senior management
review of SPE
3.5.5.2 PE.VE.2 project manager review of
SPE
3.5.5.3 PE.VE.3 SQA audits of SPE BP 07.06 Verify and Validate System:

Assess Verification and Validation
Success

3.6.0.1 IC.GO.1 agree to customer
requirements
3.6.0.2 IC.GO.2 agree to commitments
3.6.0.3 IC.GO.3 resolve intergroup issues

11

3.6.1.1 IC.CO.1 IC policy
3.6.2.1 IC.AB.1 IC resources
3.6.2.2 IC.AB.2 compatible support tools BP 16.03 Manage Systems Engineering

Support Environment: Obtain Systems
Engineering Support Environment

3.6.2.2 IC.AB.2 compatible support tools BP 16.06 Manage Systems Engineering
Support Environment: Maintain
Environment

3.6.2.3 IC.AB.3 required IC training
3.6.2.4 IC.AB.4 IC orientation for leaders
3.6.2.4 IC.AB.4 IC orientation for leaders BP 04.01 Integrate Disciplines: Involve

Disciplines
3.6.2.5 IC.AB.5 IC orientation for
engineers

BP 04.02 Integrate Disciplines: Foster
Cross-Discipline Understanding

3.6.2.5 IC.AB.5 IC orientation for
engineers

BP 04.02 Integrate Disciplines: Train Inter
Roles

3.6.3.1 IC.AC.1 participate with customer
and end users

BP 02.01 Derive and Allocate
Requirements: Develop Detailed
Operational Concept

3.6.3.1 IC.AC.1 participate with customer
and end users

BP 02.02 Derive and Allocate
Requirements: Identify Key Requirement
Issues

3.6.3.1 IC.AC.1 participate with customer
and end users

BP 06.01 Understand Customer Needs
and Expectations: Elicit Needs

3.6.3.2 IC.AC.2 work with other
engineering groups

BP 02.03 Derive and Allocate
Requirements: Partition Functions

3.6.3.2 IC.AC.2 work with other
engineering groups

BP 02.05 Derive and Allocate
Requirements: Develop Interface
Requirements

3.6.3.2 IC.AC.2 work with other
engineering groups

BP 02.08 Derive and Allocate
Requirements: Maintain Requirement
Sufficiency and Traceability

3.6.3.2 IC.AC.2 work with other
engineering groups

BP 04.04 Integrate Disciplines: Establish
Resolution Methods

3.6.3.2 IC.AC.2 work with other
engineering groups

BP 04.06 Integrate Disciplines: Develop
and Communicate Project Goals

3.6.3.2 IC.AC.2 work with other
engineering groups

BP 11.04 Monitor and Control Technical
Effort: Review Project Performance

3.6.3.2 IC.AC.2 work with other
engineering groups

BP 11.06 Monitor and Control Technical
Effort: Control Technical Effort

3.6.3.2 IC.AC.2 work with other
engineering groups

BP 02.06 Derive and Allocate
Requirements: Allocate Requirements

3.6.3.2 IC.AC.2 work with other
engineering groups (1)

BP 05.01 Integrate System: Define
Interfaces

12

3.6.3.3 IC.AC.3 develop defined process
plan

BP 04.03 Integrate Disciplines: Establish
Coordination Methods

3.6.3.4 IC.AC.4 manage critical
dependencies
3.6.3.5 IC.AC.5 accept internal work
products

BP 05.03 Integrate System: Verify Receipt
of System Elements

3.6.3.5 IC.AC.5 accept internal work
products

BP 05.04 Integrate System: Verify System
Element Correctness

3.6.3.5 IC.AC.5 accept internal work
products

BP 15.04 Manage Product Line Evolution:
Ensure Critical Component Availability

3.6.3.6 IC.AC.6 handle intergroup issues
3.6.3.7 IC.AC.7 conduct technical
interchanges

BP 04.05 Integrate Disciplines:
Communicate Results

3.6.4.1 IC.ME.1 measure status of IC
3.6.5.1 IC.VE.1 senior management
review of IC
3.6.5.2 IC.VE.2 project manager review of
IC
3.6.5.3 IC.VE.3 SQA audits of IC
3.7.0.1 PR.GO.1 plan peer reviews
3.7.0.2 PR.GO.2 remove defects
3.7.1.1 PR.CO.1 PR policy
3.7.2.1 PR.AB.1 PR resources
3.7.2.2 PR.AB.2 required PR training for
leaders
3.7.2.3 PR.AB.3 required PR training for
reviewers
3.7.3.1 PR.AC.1 develop PR plan
3.7.3.2 PR.AC.2 perform peer reviews
3.7.3.3 PR.AC.3 record peer review data
3.7.4.1 PR.ME.1 measure status of PR
3.7.5.1 PR.VE.1 SQA audits of PR
4.1.0.1 QP.GO.1 plan QPM
4.1.0.2 QP.GO.2 control process
performance quantitatively
4.1.0.3 QP.GO.3 determine process
capability
4.1.1.1 QP.CO.1 project QPM policy
4.1.1.2 QP.CO.2 organization QPM policy
4.1.2.1 QP.AB.1 QPM group
4.1.2.2 QP.AB.2 QPM resources
4.1.2.3 QP.AB.3 support analyzing data
4.1.2.4 QP.AB.4 required QPM training

13

4.1.2.5 QP.AB.5 QPM orientation
4.1.3.1 QP.AC.1 develop QPM plan
4.1.3.2 QP.AC.2 use QPM plan BP 08.03 Ensure Quality: Measure

Quality of the Process
4.1.3.3 QP.AC.3 determine data analysis
strategy

BP 08.04 Ensure Quality: Analyze Quality
Measurements

4.1.3.4 QP.AC.4 collect measurement data
4.1.3.5 QP.AC.5 control defined software
process
4.1.3.6 QP.AC.6 report results of QPM
4.1.3.7 QP.AC.7 establish organizational
process capability baseline

BP 13.01 Define Organization's Systems
Engineering Process: Establish Process
Goals

4.1.4.1 QP.ME.1 measure status of QPM
4.1.5.1 QP.VE.1 senior management
review of QPM
4.1.5.2 QP.VE.2 project manager review
of QPM
4.1.5.3 QP.VE.3 SQA audits
4.2.0.1 QM.GO.1 plan SQM
4.2.0.2 QM.GO.2 define quality goals
4.2.0.3 QM.GO.3 manage progress
toward quality goals
4.2.1.1 QM.CO.1 SQM policy
4.2.2.1 QM.AB.1 SQM resources
4.2.2.2 QM.AB.2 required SQM training
for managers
4.2.2.3 QM.AB.3 required SQM training
for engineers
4.2.3.1 QM.AC.1 develop SQM plan
4.2.3.2 QM.AC.2 use SQM plan
4.2.3.3 QM.AC.3 define quality goals
4.2.3.4 QM.AC.4 measure product quality
4.2.3.5 QM.AC.5 allocate subcontractor
quality goals
4.2.4.1 QM.ME.1 measure status of SQM
4.2.5.1 QM.VE.1 senior management
review of SQM
4.2.5.2 QM.VE.2 project manager review
of SQM
4.2.5.3 QM.VE.3 SQA audits of SQM
5.1.0.1 DP.GO.1 plan DP
5.1.0.2 DP.GO.2 identify common defect
causes

14

5.1.0.3 DP.GO.3 eliminate common defect
causes
5.1.1.1 DP.CO.1 organization DP policy
5.1.1.2 DP.CO.2 project DP policy
5.1.2.1 DP.AB.1 organization DP team
5.1.2.2 DP.AB.2 project DP team
5.1.2.3 DP.AB.3 DP resources
5.1.2.4 DP.AB.4 required DP training
5.1.3.1 DP.AC.1 develop DP plan BP 08.06 Ensure Quality: Initiate Quality

Improvement Activities
5.1.3.2 DP.AC.2 conduct DP kick-off
meeting
5.1.3.3 DP.AC.3 conduct causal analysis
5.1.3.4 DP.AC.4 coordinate DP activities
5.1.3.5 DP.AC.5 document DP data
5.1.3.6 DP.AC.6 revise organization's
standard software process
5.1.3.7 DP.AC.7 revise defined software
process
5.1.3.8 DP.AC.8 receive feedback on DP
5.1.4.1 DP.ME.1 measure status of DP
5.1.5.1 DP.VE.1 senior management
review of DP
5.1.5.2 DP.VE.2 project manager review
of DP
5.1.5.3 DP.VE.3 SQA audits of DP
5.2.0.1 TM.GO.1 plan TCM
5.2.0.2 TM.GO.2 evaluate new
technologies
5.2.0.3 TM.GO.3 transfer new
technologies
5.2.1.1 TM.CO.1 TCM policy
5.2.1.2 TM.CO.2 senior management
sponsorship of TCM
5.2.1.3 TM.CO.3 senior management
oversight of TCM
5.2.2.1 TM.AB.1 TCM group
5.2.2.2 TM.AB.2 TCM resources
5.2.2.3 TM.AB.3 support analyzing
technology change
5.2.2.4 TM.AB.4 technology change data
5.2.2.5 TM.AB.5 required TCM training
5.2.3.1 TM.AC.1 develop TCM plan BP 15.04 Manage Product Line Evolution:

Ensure Critical Component Availability

15

5.2.3.2 TM.AC.2 work with projects BP 15.01 Manage Product Line Evolution:
Define Product Evolution

5.2.3.2 TM.AC.2 work with projects BP 15.02 Manage Product Line Evolution:
Identify New Product Technologies

5.2.3.3 TM.AC.3 inform of TCM
5.2.3.4 TM.AC.4 analyze need for
technology change
5.2.3.4 TM.AC.4 analyze need for
technology change

BP 15.02 Manage Product Line Evolution:
Identify New Product Technologies

5.2.3.5 TM.AC.5 select technologies BP 15.02 Manage Product Line Evolution:
Identify New Product Technologies

5.2.3.5 TM.AC.5 select technologies BP 16.03 Manage Systems Engineering
Support Environment: Obtain Systems
Engineering Support Environment

5.2.3.6 TM.AC.6 pilot new technology BP 15.03 Manage Product Line Evolution:
Adapt Development Processes

5.2.3.7 TM.AC.7 incorporate new
organizational technologies

BP 15.03 Manage Product Line Evolution:
Adapt Development Processes

5.2.3.7 TM.AC.7 incorporate new
organizational technologies

BP 15.04 Manage Product Line Evolution:
Ensure Critical Component Availability

5.2.3.7 TM.AC.7 incorporate new
organizational technologies

BP 15.05 Manage Product Line Evolution:
Manage Product Technology Insertion

5.2.3.7 TM.AC.7 incorporate new
organizational technologies

BP 16.05 Manage Systems Engineering
Support Environment: Insert New
Technology

5.2.3.8 TM.AC.8 incorporate new project
technologies

BP 15.05 Manage Product Line Evolution:
Manage Product Technology Insertion

5.2.4.1 TM.ME.1 measure status of TCM
5.2.5.1 TM.VE.1 senior management
review of TCM
5.2.5.2 TM.VE.2 SQA audits of TCM
5.3.0.1 PC.GO.1 plan PCM
5.3.0.2 PC.GO.2 organization-wide
participation
5.3.0.3 PC.GO.3 continual improvement
5.3.1.1 PC.CO.1 PCM policy
5.3.1.2 PC.CO.2 senior management
sponsorship of PCM
5.3.2.1 PC.AB.1 PCM resources
5.3.2.2 PC.AB.2 required PCM training
for managers
5.3.2.3 PC.AB.3 required PCM training
for engineers (SWE mgr)

16

5.3.2.4 PC.AB.4 required PCM training
for senior management
5.3.3.01 PC.AC.1 establish empowered
improvement
5.3.3.02 PC.AC.2 coordinate
improvement
5.3.3.03 PC.AC.3 develop PCM plan
5.3.3.04 PC.AC.4 use PCM plan BP 14.02 Improve Organization's Systems

Engineering Processes: Plan Process
Improvements

5.3.3.05 PC.AC.5 handle improvement
proposals
5.3.3.06 PC.AC.6 participate in
improvements

BP 08.05 Ensure Quality: Obtain
employee participation

5.3.3.07 PC.AC.7 pilot improvements
5.3.3.08 PC.AC.8 transfer improvements BP 14.03 Improve Organization's Systems

Engineering Processes: Change the
Standard Process

5.3.3.09 PC.AC.9 maintain improvement
records
5.3.3.10 PC.AC.10 receive feedback on
improvement

BP 14.04 Improve Organization's Systems
Engineering Processes: Communicate
Process Improvements

5.3.3.10 PC.AC.10 receive feedback on
improvement

BP 16.07 Manage Systems Engineering
Support Environment: Monitor Systems
Engineering Support Environment

5.3.4.1 PC.ME.1 measure status of PCM
5.3.5.1 PC.VE.1 senior management
review of PCM
5.3.5.2 PC.VE.2 SQA audits of PCM

BP 01.01 Analyze Candidate Solutions:
Establish Evaluation Criteria
BP 01.02 Analyze Candidate Solutions:
Define Analysis Approach
BP 01.03 Analyze Candidate Solutions:
Identify Additional Alternatives
BP 01.04 Analyze Candidate Solutions:
Analyze Candidate Solutions
BP 01.05 Analyze Candidate Solutions:
Select Solution
BP 01.06 Analyze Candidate Solutions:
Capture Results
BP 02.04 Derive and Allocate
Requirements: Derive Requirements

17

BP 03.01 Evolve System Architecture:
Derive the System Architecture
Requirements
BP 03.02 Evolve System Architecture:
Identify Key Design Issues
BP 03.03 Evolve System Architecture:
Develop System Structure
BP 03.05 Evolve System Architecture:
Allocate System Requirements
BP 03.06 Evolve System Architecture:
Maintain Requirement Sufficiency and
Traceability
BP 03.07 Evolve System Architecture:
Capture Results and Rationale
BP 03.08 Evolve System Architecture:
Identify post-development requirements
BP 17.02 Provide Ongoing Skills and
Knowledge: Select mode of acquiring
knowledge
BP 17.03 Provide Ongoing Skills and
Knowledge: Ensure skill available

18

Effective CMM-Based Process
Improvement

Mark C. Paulk, Software Engineering Institute, USA

Abstract
The Capability Maturity ModelSM for Software developed by the Software
Engineering Institute has had a major influence on software process and quality
improvement around the world. Although the CMMSM has been widely
adopted, there remain many misunderstandings about how to use it effectively
for business-driven software process improvement. This paper discusses how to
use the CMM correctly and effectively. It also discusses aspects of successful
process improvement efforts that are not explicitly addressed by the CMM, but
which are critical to achieving business and process improvement goals.

Keywords: CMM, Capability Maturity Model, software process, process
improvement.

1. Introduction

The Capability Maturity ModelSM for Software (CMMSM or SW-CMM1)
developed by the Software Engineering Institute (SEI) has had a major influence
on software process and quality improvement around the world [Paulk95]. The
SW-CMM defines a five-level framework for how an organization matures its
software process. These levels describe an evolutionary path from ad hoc,
chaotic processes to mature, disciplined software processes. The five levels, and
the 18 key process areas that describe them in detail, are summarized in Figure 1.

The five levels can be briefly described as:

1) Initial The software process is characterized as ad hoc, and
occasionally even chaotic. Few processes are defined, and
success depends on individual effort and heroics.

 © 1996 by Carnegie Mellon University.
 This work is sponsored by the U.S. Department of Defense.
 CMM, Capability Maturity Model, and IDEAL are service marks of Carnegie Mellon University.
 This paper was published as in Proceedings of the 6th International Conference on Software
Quality, Ottawa, Canada, 28-31 October 1996, pp. 226-237.
1 Because of the proliferation of capability maturity models inspired by the success of the CMM,
we are starting to use the acronym SW-CMM when referring to the CMM for Software.

1

2) Repeatable Basic project management processes are established to
track cost, schedule, and functionality. The necessary
process discipline is in place to repeat earlier successes on
projects with similar applications.

3) Defined Management and engineering activities are documented,
standardized, and integrated into a family of standard
software processes for the organization. Projects use a
tailored version of the organization’s standard software
processes for developing and maintaining software.

4) Managed Detailed measures of the software process and product
quality are collected. Software processes and products are
quantitatively understood and controlled.

5) Optimizing Continuous process improvement is facilitated by
quantitative feedback from the process and from piloting
innovative ideas and technologies.

The key process areas are satisfied by achieving goals, which are described by
key practices, subpractices, and examples. The rating components of the SW-
CMM are maturity levels, key process areas, and goals. The other components
are informative and provide guidance on how to interpret the model.

1
Initial

Competent people and heroics

Defect Prevention
Technology Change Management
Process Change Management

5
Optimizing

4
Managed

3
Defined

2
Repeatable

Continuous
process
improvement

Product and
process quality

Engineering
processes and
organizational
support

Project
management
processes

Quantitative Process Management
Software Quality Management

Organization Process Focus
Organization Process Definition
Training Program
Integrated Software Management
Software Product Engineering
Intergroup Coordination
Peer Reviews

Requirements Management
Software Project Planning
Software Project Tracking & Oversight
Software Subcontract Management
Software Quality Assurance
Software Configuration Management

Level Focus Key Process Areas

Figure 1. The key process areas in the SW-CMM.

While the SW-CMM has been very influential around the world in inspiring and
guiding software process improvement (SPI), it has also been misused and

2

abused by some and not used effectively by others. Although the SEI’s work has
its critics [Bach94, Jones95], there is a growing body of data indicating the power
of CMM-based process improvement [Herbsleb94, Lawlis95]. The purpose of
this paper is to discuss the correct, effective use of the SW-CMM and to
recommend specific software engineering and management practices that map to
the SW-CMM, as noted in the footnotes. The recommendations in this paper
reflect my personal opinion, based on my experience in working with a number
of “world-class” software organizations.

Ideally, effective use of the SW-CMM should build an organization that can
dynamically adapt to a rapidly changing, even chaotic, environment; an
organization that knows what business it is in and pursues software projects
aligned with its strategic business objectives; a learning organization that
explicitly, rather than implicitly, captures knowledge; an organization managed
by facts rather than intuition, while still valuing creativity; an organization that
empowers its most crucial asset: its people.

2. Effective CMM-Based Process Improvement

Using the SW-CMM correctly means balancing conflicting objectives. CMM-
based appraisals require the use of professional judgment. Although the SW-
CMM provides a significant amount of guidance in making these judgments,
removing subjectivity implies a deterministic, repetitive process that is not
characteristic of engineering design work.

The SW-CMM is sometimes referred to as a set of process requirements, but it
does not contain any “shall” statements. The goals, key practices, and
subpractices of its key process areas are arranged in a hierarchy useful for
interpreting or tailoring the SW-CMM. As Charlie Weber has pointed out, “To
tailor a goal, you should sweat blood (and then be conservative in mapping the
relationship to “the” CMM). To tailor a key practice, you should just sweat. To
tailor a subpractice, your conscience should hardly bother you.”

To a knowledgeable software professional, many of these recommendations may
seem obvious. I fear, however, that the consistent implementation of even well-
known good engineering and management practices is far from common.

2.1 Management Sponsorship

Trite though it may seem, obtaining senior management sponsorship is a crucial
component of building organizational capability.2 As individuals, we can
exercise professionalism and discipline within our sphere of control, but if an
organization as a whole is to change its performance, then its senior management

2 Organization Process Focus, Commitment 2; Process Change Management, Commitment 2.

3

must actively support the change. Bottom-up SPI, without sponsorship and
coordination, leads to islands of excellence rather than predictably improved
organizational capability. Effective sponsorship will only occur, however, when
there is significant dissatisfaction with the status quo.

Sponsorship involves such activities as setting policies3 and providing resources
for process work,4 but the most crucial factor is that senior management believe
in the strategic importance of process improvement, demonstrate their support,
and pay attention.5 If, on the other hand, management provides annual speeches
on the importance of quality and then returns to the “really important” issues of
cost and schedule, then that message will be received also.

“Paying attention” may lead to the Hawthorne Effect: people increase their
efforts as a result of the attention, and productivity and quality could improve
even if the work environment becomes worse. Sustaining improvement over an
extended period, however, implies systematic change aligned with the business
objectives of the organization.

If process improvement is a true priority, then management will monitor it
closely.6 Management should set aggressive improvement goals, while at the
same time recognizing that achieving higher levels of software process maturity
is incremental and requires a long-term commitment to continuous process
improvement. It may be useful to view software process improvement as a
project, with goals, plans for achieving those goals, and management of progress.
Do not forget, however, that changing the culture requires the long view. CMM-
based improvement is most effective within a systematic approach to SPI, such as
the SEI’s IDEALSM approach.7

2.2 Commitments and Management by Fact

Management by fact is a paradigm shift for most organizations, which must be
based on a measurement foundation.8 To make data analysis useful, you need to
understand what the data means and how to analyze it meaningfully. Begin by
collecting a simple set of useful data (I recommend the Goal/Question/Metric
approach [Basili92].). Then deploy standard definitions for typical measures9

that support aggregating and comparing data from different environments.

3 Policy practices in Commitment to Perform.
4 Organization Process Focus, Abilities 1 and 2; in general, the resource practices in Ability to
Perform.
5 Organization Process Focus, Commitment 3; management oversight practices in Verifying
Implementation.
6 Organization Process Focus, Verification 1.
7 IDEAL stands for Initiate, Diagnose, Establish, Act, and Leverage.
8 Measurement practices in Measurement and Analysis.
9 Organization Process Definition, Activity 5.

4

A corollary to collecting data is to believe what it tells you. If you have
historically developed 100 lines of code per month, “betting the company” that
you can bring in a critical project at 1000 lines of code per month is almost
certainly unwise. And changing the size estimates without changing
commitments and functionality is not likely to help matters.

You also have to be sensitive to the potential for causing dysfunctional behavior
by what you measure [Austin94]. People will focus their efforts where
management is paying attention. If management only pays attention to schedule,
then quality is likely to suffer. The act of measuring identifies what is important,
but some things are difficult to measure. Management needs to ensure that
attention is visibly paid to all critical aspects of the project, including those
difficult to measure, not just those it is easy to measure and track. The corollary
to believing the data is to recognize that no limited set of data can completely
capture a complex operation.

Establish an internal commitment process10 based on what you know you can
do. If the workers buy in to a set of commitments as being realistic, even if
aggressive, then they have made a personal commitment. If they consider the
stated commitments as being a management pipe dream, they are likely to
consider the resulting problems to be management’s. This implies that
management should seek worker feedback when establishing commitments.

2.3 Process Focus

In most organizations, a software engineering process group (SEPG) or some
equivalent should be formed to coordinate process definition, improvement, and
deployment activities.11 The SEPG should be formed early, e.g., in the Initiating
phase of the IDEAL approach, and be staffed with competent and respected
individuals possessing both managerial and technical skills. It is crucial that
these individuals have good interpersonal skills. Success of the SEPG depends
on their ability to communicate, teach, negotiate, and consult [Mogilensky94].

One of the reasons for dedicating resources to an SEPG is to ensure follow-
through on appraisal findings.12 Many improvement programs have foundered
simply because no action resulted from the appraisal. Improvement comes from
action planning, assigning individuals to do the work, piloting and deploying
improved processes, and management oversight throughout.

It is desirable to have part-time participants on process improvement teams. In
saying that SEPGs should coordinate process activities, the word “coordinate”

10 Software Project Planning, Activities 1-3.
11 Organization Process Focus, Ability 1.
12 Organization Process Focus, Activity 1.

5

was deliberately chosen. The skills and knowledge of the organization’s best
people should be brought to bear on addressing its problems. In a world-class
organization, I would expect everyone to participate in process and quality
improvement activities.13 Worker participation and empowerment enable
successful process improvement.

Begin with the “as is” process, not the “should be” process, to leverage effective
practices and co-opt resisters. Mandating top-down that everyone will follow
the new “should be” process, particularly if not developed by empowered
workers, is a common recipe for failure. The “as is” process evolved because the
people doing the work needed to get the job done – even if that meant going
around the system. The “should be” process may, or may not, be feasible in the
given culture and environment. With an organizational focus on process
management and improvement, the “as is” and “should be” processes will
converge, resulting in organizational learning.

It is important to remember that software process improvement occurs in a
business context. There may be many other crucial business issues being worked
at the same time; there may even be a Total Quality Management (TQM)
initiative under way. Since CMM-based improvement is an application of TQM
principles to software, the synergy of aligning these initiatives seems obvious.
Some of the most effective SPI programs I have seen operated under the umbrella
of a TQM initiative – and in the instances where I have observed disjoint TQM
and SPI programs, both were ineffective.

2.4 Useful Processes

Document your processes.14 The reasons for documenting a process (or product)
are 1) to communicate – to others now and perhaps to yourself later; 2) to
understand – if you can’t write it down, you don’t really understand; and 3) to
encourage consistency – take advantage of repeatability.

Building software is a design-intensive, creative activity. While the discipline of
process is a crucial enabler of success, the objective is to solve a problem, and this
requires creativity. Software processes should be repeatable, even if they are not
repetitive. The balance between discipline and creativity can be challenging
[Glass95]. Losing sight of the creative, design-intense nature of software work
leads to stifling rigidity. Losing sight of the need for discipline leads to chaos.

Processes need to be tailored to the needs of the project [Ginsberg95].15

Although standard processes provide a foundation, each project will also have

13 Process Change Management, Goal 2.
14 Organization Process Definition.
15 Organization Process Definition, Activity 4.

6

unique needs. Unreasonable constraints on tailoring can lead to significant
resistance to following the process.

The following list contains some process attributes that are important for useful
and effective processes:

• documented – but keep it simple
• trained – impart the skill to use it
• practiced – used even in a crisis
• measured – simple measures for insight into critical questions
• owned – by a responsible party
• maintained – updated as needed
• supported – in plans and by management expectations and rewards
• controlled – process changes are disciplined
• verified and validated – checked for correct execution

Keep the process simple because we live in a rapidly changing world. Processes
do not need to be lengthy or complex. The SW-CMM is about doing things, not
having things. A 1-2 page process description may suffice [Humphrey95], and
subprocesses and procedures16 can be invoked as needed and useful. Order is
not created by complex controls, but by the presence of a few guiding formulae
or principles [Wheatley92, page 11].

2.5 Training

Documented processes are of little value if they are not effectively deployed.
Training, via a wide variety of mechanisms, is critical to consistent and effective
software engineering and management.17 Training is an investment in our
greatest asset – our people [Curtis95].

The reason for training is to develop skills. There are many “training
mechanisms” other than formal classroom training that can be effective in
building skills. One that should be seriously considered is a formal mentoring
program. In this case, formality means going beyond assigning a mentor and
hoping that experience will rub off. Formality implies training people on how to
mentor and monitoring the effectiveness of the mentoring. For example, the
Onboard Shuttle project considers mentoring in doing causal analysis of defects
[Paulk95].

16 Process descriptions are frequently composed of subprocesses, methods, and/or procedures,
which in turn may be supported by automated tools. Procedures may be lengthy, but they are
also usually deterministic.
17 Training Program.

7

Management training is particularly important because ineffective management
can cripple a good team.18 People who are promoted to management because of
their technical skills have to acquire a new set of skills, including interpersonal
skills [Mogilensky94, Weinberg94].

Having taken the Personal Software Process (PSP) course, I can highly
recommend it for building self-discipline [Humphrey95]. Note that the effect of
reading the book is not the same as taking the course and doing the work!
Where the SW-CMM addresses the organizational side of process improvement,
PSP addresses building the capability of individual practitioners. The PSP course
convinces the individual, based on his or her own data, of the value of a
disciplined, engineering approach to building software. Even if the organization
is not interested in PSP, I would recommend it for professional development;
applying PSP can be a survival skill in a level 1 organization.

2.6 Risk Management

Some argue that software project management is really risk management.19 In
one sense, the SW-CMM is about managing risk. We attempt to establish stable
requirements20 so that we can plan21 and manage22 effectively, but the business
environment changes rapidly, perhaps chaotically. We try to establish an island
of order in the sea of software chaos, but both order and chaos have a place. As
Wheatley suggests, “To stay viable, open systems maintain a state of non-
equilibrium, keeping the system in balance so that it can change and grow.”
[Wheatley92, page 78] Although we can establish processes that help us manage
the risks of a chaotic world, we also need to change and grow.

This implies that you should use an incremental or evolutionary life cycle.23 If
you want to focus on risk management, the spiral model may be the preferred
life cycle model. If you want to focus on involving the customer, perhaps rapid
prototyping or joint application design would be preferable. Few long-term
projects have the luxury of the stable environment necessary for the waterfall life
cycle to be the preferred choice – yet it is probably the most common life cycle.
(Note that for small projects, the waterfall life cycle may be an excellent choice.)

18 Software Project Planning, Ability 4; Software Project Tracking and Oversight, Ability 4;
Integrated Software Management, Ability 3.
19 Software Project Planning, Activity 13; Software Project Tracking and Oversight, Activity 10;
Integrated Software Management, Activity 10.
20 Requirements Management.
21 Software Project Planning.
22 Software Project Tracking and Oversight; Integrated Software Management.
23 Software Project Planning, Activity 5.

8

2.7 Customer-Supplier Relationship

Establish a good, working relationship with the customer and end user based on
open communication and integrity.24 This requires cooperation from the
customer, and the danger of customer irrationality is difficult to overstate.
Building good customer-supplier relationships is a long-term effort, but if the
organization has (or wants to have) a stable customer base, the customer must
appreciate the complexities of software engineering just as the supplier must
understand the application domain and business environment for the software
product. Even those organizations that operate in an environment where
customer “churn” is the norm can profit from a (deserved) reputation for quality
and integrity.

Talk to the customer. In the exercises for our Introduction to the CMM training,
one of our most common observations is that the teams do not talk to their
customer. This is crucial in making good cost, schedule, functionality, and
quality tradeoff decisions. In a study done for one multinational company,
which focused on leading-edge technology as its primary competitive advantage,
the #1 and #2 issues for satisfying customer expectations were “quality” and
“meeting commitments.” “Technology” was #7.

One of the drivers behind software capability evaluations (SCE) is the customer’s
desire for predictable costs and schedules. Communication is critical for setting
(and changing) customer expectations. Our contact at one of the early SCE pilot
organizations commented later that he considered the improved customer-
supplier communication to have been worth the (nontrivial) cost of doing SCEs,
even if there had been no other improvement.

And, of course, be a good customer yourself when the tables are turned.

2.8 Peer Reviews

Although you can argue over the best kind of peer review, the simple fact is that
the benefits of peer reviews far outweigh their costs.25 The data suggests some
form of inspection should be used [Ackerman89], but any form of collegial or
disciplined review, such as structured walkthroughs, adds significant value.

Some time ago, one of my colleagues had an interesting question about peer
reviews. He had been consulting with a company that had its supervisors review
code. This had been successful for them and was firmly entrenched in their
culture. His question was whether this satisfied the Peer Reviews key process

24 Requirements Management; Software Project Tracking and Oversight, Activity 13; Software
Quality Assurance, Activity 8; Intergroup Coordination, Goal 1, Activity 1.
25 Peer Reviews.

9

area. My answer was that it did not. Peers are not supervisors, and having only
one person do the review seems inadequate.

My colleague later reported that the company had performed an experiment
comparing their supervisor reviews with peer reviews. They discovered that
peer reviews found significantly more errors than supervisor reviews. They also
discovered that supervisor reviews tended to identify “form errors” while peer
reviews tended to identify “content errors.” They also performed reviews with
designers as well as “code-level peers” and found that these reviews identified
more (and more design-oriented) errors than the code-level peer reviews.26

The significant point to me was that they experimented to find a data-based
answer to an open issue. They did not take a consultant’s advice on faith. I
consider this one of the hallmarks of a learning organization, one that can take
advantage of the SW-CMM effectively.

3. Conclusion

The SW-CMM represents a “common sense engineering” approach to software
process improvement. Its maturity levels, key process areas, goals, and key
practices have been extensively discussed and reviewed within the software
community. While the SW-CMM is neither perfect nor comprehensive [Curtis95,
Bate95], it does represent a broad consensus of the software community and is a
useful tool for guiding SPI efforts.

Never forget why process improvement is important. Standards and models
such as the SW-CMM can help organizations improve their software process, but
focusing on achieving a maturity level without really improving the underlying
process is a danger. Maturity levels should be a measure of improvement, not
the goal of improvement. What are the business needs and business goals of the
improvement effort? What is the impact on cost, cycle time, productivity,
quality, and – most importantly – customer satisfaction?

4. References

Ackerman89 A.F. Ackerman, L.S. Buchwald, and F.H. Lewski, “Software
Inspections: An Effective Verification Process,” IEEE Software,
Vol. 6, No. 3, May 1989, pp. 31-36.

Austin94 Robert D. Austin, “Theories of Measurement and Dysfunction
in Organizations,” PhD Dissertation, Department of Social and

26 I think most peer review experts would agree that including designers in a peer review is a
good idea. Including supervisors may be acceptable also, but there is a potential for dysfunction
if they do performance reviews and are responsible for raises and promotions.

10

Decision Sciences, Carnegie Mellon University, 10 September
1994.

Bach94 James Bach, “The Immaturity of the CMM,” American
Programmer, Vol. 7, No. 9, September 1994, pp. 13-18.

Basili92 V.R. Basili, “Software Modeling and Measurement: The
Goal/Question/Metric Paradigm,” University of Maryland, CS-
TR-2956, UMIACS-TR-92-96, 1992.

Bate95 Roger Bate, Dorothy Kuhn, Curt Wells, et al, “A Systems
Engineering Capability Maturity Model, Version 1.1,” Software
Engineering Institute, CMU/SEI-95-MM-003, November 1995.

Curtis95 Bill Curtis, William E. Hefley, and Sally Miller, “People
Capability Maturity Model,” Software Engineering Institute,
CMU/SEI-95-MM-02, September 1995.

Ginsberg95 Mark Ginsberg and Lauren Quinn, “Process Tailoring and the
Software Capability Maturity Model,” Software Engineering
Institute, CMU/SEI-94-TR-024, November 1995.

Glass95 Robert L. Glass, Software Creativity, Prentice Hall, Englewood
Cliffs, NJ, 1995.

Herbsleb94 James Herbsleb, Anita Carleton, et al., “Benefits of CMM-Based
Software Process Improvement: Initial Results,” Software
Engineering Institute, CMU/SEI-94-TR-13, August 1994.

Humphrey95 Watts S. Humphrey, A Discipline for Software Engineering,
ISBN 0-201-54610-8, Addison-Wesley Publishing Company,
Reading, MA, 1995.

Jones95 Capers Jones, “The SEI’s CMM – Flawed?,” Software
Development, Vol. 3, No. 3, March 1995, pp. 41-48.

Lawlis95 Patricia K. Lawlis, Robert M. Flowe, and James B. Thordahl, “A
Correlational Study of the CMM and Software Development
Performance,” Crosstalk: The Journal of Defense Software
Engineering, Vol. 8, No. 9, September 1995, pp. 21-25.

Mogilensky94 Judah Mogilensky and Betty L. Deimel, “Where Do People Fit in
the CMM?,” American Programmer, Vol. 7, No. 9, September
1994, pp. 36-43.

11

Paulk95 Carnegie Mellon University, Software Engineering Institute
(Principal Contributors and Editors: Mark C. Paulk, Charles V.
Weber, Bill Curtis, and Mary Beth Chrissis), The Capability
Maturity Model: Guidelines for Improving the Software
Process, ISBN 0-201-54664-7, Addison-Wesley Publishing
Company, Reading, MA, 1995.

Weinberg94 Gerald M. Weinberg, Quality Software Management, Volume
3: Congruent Action, ISBN 0-932633-28-5, Dorset House, New
York, NY, 1994.

Wheatley92 Margaret J. Wheatley, Leadership and the New Science,
Berrett-Koehler Publishers, San Francisco, CA, 1992.

For Further Information

SEI Customer Relations
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
(412) 268-5800
Internet: customer-relations@sei.cmu.edu

The SEI Web page is
http://www.sei.cmu.edu/

For information specifically on the SW-CMM, visit
http://www.sei.cmu.edu/technology/cmm/

Acknowledgments

I would like to thank Donna Dunaway, Watts Humphrey, Susanne Kelly, Bill
Peterson, Charlie Weber, and Dave Zubrow for their comments on this paper.

12

ISO 12207, ISO 15504, SW-CMM v1.1, SW-CMM v2 Draft C Mapping 1

Top-Level Standards Map
ISO 12207, ISO 15504 (Jan 1998 TR), Software CMM v1.1 and v2 Draft C

Done 23 February 1998

The mapping between ISO 12207 and ISO 15504 comes from Annex A in ISO 15504. This mapping is at the process level
(although a more detailed mapping of the development process subprocesses is included because of the potential impact on
Software CMM v2). Items in (parentheses) indicate a judgmental or inferential relationship, rather than a direct relationship
processes and key process areas.

This mapping shows how a set of topics in one document "lie on top" of the equivalent topics in another. Topics are typically
not isomorphic but are highly correlated. Anyone adequately implementing, for example, the Configuration Management
Process in ISO 12207 or ISO 15504 could reasonably expect to have satisfied the Software Configuration Management key
process area in the Software CMM. Topics are not usually isomorphic because of extensions that may be added (e.g., in ISO
15504 in comparison to ISO 12207) or different levels of abstraction that may have been chosen (e.g., the Development
Process in ISO 12207 addresses the same set of concerns as the Software Product Engineering key process area in the Software
CMM; the Maintenance Process in ISO 12207 is addressed as a subpractice in Software CMM v2C since maintenance is
considered a project environment where all of the CMM key process areas are appropriately implemented).

ISO 12207, ISO 15504, SW-CMM v1.1, SW-CMM v2 Draft C Mapping 2

ISO 12207 ISO 15504 SW-CMM v1.1 SW-CMM v2 Draft C

5. Primary life cycle processes

5.1 Acquisition process CUS.1 Acquisition process Software Subcontract
Management

Software Acquisition
Management

5.2 Supply process CUS.2 Supply process1 (Software Project Planning;

 Software Project Tracking &
Oversight;

 Software Product Engineering)

(Software Project Planning;

 Software Project Control;

 Software Product Engineering)

CUS.3 Requirements elicitation
process

Software Product Engineering,
Activity 2

5.3 Development process ENG.1 Development process Software Product Engineering Software Product Engineering

5.3.1 Process implementation ENG.1 Development process Software Product Engineering Software Product Engineering

5.3.2 System requirements
analysis

ENG.1.1 System requirements
analysis and design process

(Software Product Engineering,
Activity 2)2

5.3.3 System architectural
design

ENG.1.1 System requirements
analysis and design process

(Software Product Engineering,
Activity 2)3

5.3.4 Software requirements
analysis

ENG.1.2 Software requirements
analysis process

Software Product Engineering,
Activity 2

Software Product Engineering,
Activity 3

1 The Supply Process deals with providing software to the customer that meets the agreed requirements. Establishing a contract, developing
the software, and delivering it to the customer, which are the issues for this process, are addressed in various KPAs, although the Supply
Process itself is not explicitly specified in the SW-CMM.
2 Although not explicitly called out as system requirements analysis, PE.AC.2 will frequently be implemented as such.
3 Although not explicitly called out as system requirements analysis, PE.AC.2 will frequently be implemented as such.

ISO 12207, ISO 15504, SW-CMM v1.1, SW-CMM v2 Draft C Mapping 3

ISO 12207 ISO 15504 SW-CMM v1.1 SW-CMM v2 Draft C

5.3.5 Software architectural
design

ENG.1.3 Software design
process

Software Product Engineering,
Activity 3

Software Product Engineering,
Activity 4

5.3.6 Software detailed design ENG.1.3 Software design
process

Software Product Engineering,
Activity 3

Software Product Engineering,
Activity 4

5.3.7 Software coding and
testing

ENG.1.4 Software construction
process

Software Product Engineering,
Activity 4

Software Product Engineering,
Activity 5

5.3.8 Software integration ENG.1.5 Software integration
process

Software Product Engineering,
Activity 6

Software Product Engineering,
Activity 6

5.3.9 Software qualification
testing

ENG.1.6 Software testing
process

Software Product Engineering,
Activity 7

Software Product Engineering,
Activities 7 and 8

5.3.10 System integration ENG.1.7 System integration and
testing process

(Software Product Engineering,
Activity 6)

(Software Product Engineering,
Activity 6)

5.3.11 System qualification
testing

ENG.1.7 System integration and
testing process

(Software Product Engineering,
Activity 7)

(Software Product Engineering,
Activities 7 and 8)

5.3.12 Software installation CUS.2 Supply process Software Product Engineering,
Activity 10

5.3.13 Software acceptance
support

CUS.2 Supply process Software Product Engineering,
Activities 10 and 11

5.4 Operation process CUS.4 Operational use process Software Product Engineering,

ISO 12207, ISO 15504, SW-CMM v1.1, SW-CMM v2 Draft C Mapping 4

ISO 12207 ISO 15504 SW-CMM v1.1 SW-CMM v2 Draft C
Activity 11

5.5 Maintenance process ENG.2 System and software
maintenance process

(Software Product Engineering,
Activity 11)4

6. Supporting life cycle
processes

6.1 Documentation process SUP.1 Documentation process Software Product Engineering,
Activity 8

Software Product Engineering,
Activity 9

6.2 Configuration management
process

SUP.2 Configuration
management process

Software Configuration
Management

Software Configuration
Management

6.3 Quality assurance process SUP.3 Quality assurance process Software Quality Assurance Software Quality Assurance

6.4 Verification process SUP.4 Verification process (Peer Reviews;

 Software Product Engineering,
Activities 5 and 6)

(Peer Reviews;

 Software Product Engineering,
Activities 6 and 7)

6.5 Validation process SUP.5 Validation process Software Product Engineering,
Activity 5

Software Product Engineering,
Activities 7 and 8

6.6 Joint review process SUP.6 Joint review process Software Project Tracking &
Oversight, Activity 13

(Software Project Control,
Activity 10)

6.7 Audit process SUP.7 Audit process (Software Quality Assurance)5 (Software Quality Assurance)

4 In general, the SW-CMM considers maintenance to be a particular environment in which all of the KPAs are implemented as appropriate.
Maintenance is, however, specifically addressed in the subpractices of PE.AC.11 (as is retirement) to provide a complete picture of the
support key practice.
5 SQA covers both quality assurance and audits. To large degree, audits add the attribute of independence to QA. The SQA KPA can be
implemented as an independent function or not; the requirement is objective verification rather than independent verification. SQA may, or
may not, therefore cover the Audit Process in a particular environment.

ISO 12207, ISO 15504, SW-CMM v1.1, SW-CMM v2 Draft C Mapping 5

ISO 12207 ISO 15504 SW-CMM v1.1 SW-CMM v2 Draft C

6.8 Problem resolution process SUP.8 Problem resolution
process

Software Configuration
Management, Activity 5

Software Configuration
Management, Activity 4

7. Organizational life cycle
processes

7.1 Management process MAN.1 Management process6 (Software Project Planning;

 Software Project Tracking &
Oversight;

 Integrated Software
Management)

(Software Project Planning;

 Software Project Control;

 Integrated Software
Management)

MAN.2 Project management
process

Software Project Tracking &
Oversight;

 Integrated Software
Management

Software Project Planning;

 Software Project Control;

 Integrated Software
Management

MAN.3 Quality Management
Process

Software Quality Management (Statistical Process
Management)7

MAN.4 Risk Management
Process

Software Project Planning,
Activity 13;

 Software Project Tracking &
Oversight, Activity 10;

 Integrated Software
Management, Activity 10

Software Project Planning,
Activity 11;

 Software Project Tracking &
Oversight, Activity 8;

 Integrated Software
Management, Activities 6 and 7

6 This is the generic planning and management process that is to be applied to any process, rather than specifically to the project.
7 The process and product issues at level 4 that were separated in v1.1 were combined in SPM in v2.

ISO 12207, ISO 15504, SW-CMM v1.1, SW-CMM v2 Draft C Mapping 6

ISO 12207 ISO 15504 SW-CMM v1.1 SW-CMM v2 Draft C

ORG.1 Organizational
alignment process8

(Organization Process Focus;

 Organization Software Asset
Commonality)

7.2 Infrastructure process ORG.4 Infrastructure process Organization Process Definition Organization Process Definition

7.3 Improvement process ORG.2 Improvement process Organization Process Definition Organization Process Definition

7.4 Training process ORG.3 Human Resource
management process

Training Program Organization Training Program

ORG.5 Measurement process Measurement and Analysis
(common feature)

Measurement and Analysis
(common feature);

 (Organization Process
Performance)

ORG.6 Reuse process Organization Software Asset
Commonality

Requirements Management Requirements Management

Intergroup Coordination Project Interface Coordination

Peer Reviews Peer Reviews

Quantitative Process
Management

Statistical Process Management

Organization Process
Performance

8 The purpose of the Organizational Alignment Process is to ensure that individuals share a common vision, culture, and understanding of
business goals.

ISO 12207, ISO 15504, SW-CMM v1.1, SW-CMM v2 Draft C Mapping 7

ISO 12207 ISO 15504 SW-CMM v1.1 SW-CMM v2 Draft C

Defect Prevention Defect Prevention

Technology Change
Management

Organization Process &
Technology Innovation

Process Change Management Organization Improvement
Deployment

1

Using the Software CMM in Small Organizations

Mark C. Paulk

Abstract

The Capability Maturity ModelSM for Software developed by the Software Engineering Institute has had
a major influence on software process and quality improvement around the world. Although the CMM
has been widely adopted, there remain many misunderstandings about how to use it effectively for
business-driven software process improvement, particularly for small organizations and small projects.
Some of the common problems with interpreting the Software CMM for the small project/organization
include:
§ What does "small" mean? In terms of people? Time? Size of project? Criticality of product?
§ What are the CMM "requirements"? Are there key process areas or goals that should not be applied

to small projects/organizations? Are there "invariants" of good processes?
§ What are the drivers and motivations that cause abuse of the CMM?
This paper discusses how to use the CMM correctly and effectively in any business environment, with
examples for the small organization. The conclusion is that the issues associated with interpreting the
Software CMM for the small project or organization may be different in degree, but they are not different
in kind, from those for any organization interested in improving its software processes. Using the
Software CMM effectively and correctly requires professional judgment and an understanding of how the
CMM is structured to be used for different purposes.

MARK C. PAULK
Software Engineering Institute
Carnegie Mellon University

4500 Fifth Avenue
Pittsburgh, PA 15213

Telephone: +1 (412) 268-5794
Fax: +1 (412) 268-5758

Internet: mcp@sei.cmu.edu

Mark is a Senior Member of the Technical Staff at the Software Engineering Institute. He has been with
the SEI since 1987, initially working with the Software Capability Evaluation project. Mark has worked
with the Capability Maturity Model project since its inception and was the project leader during the
development of Version 1.1 of the Software CMM. He is also actively involved with software engineering
standards, including
§ ISO 15504 (aka SPICE -- Software Process Improvement and Capability dEtermination), an

emerging suite of international standards for software process assessment
§ ISO 12207, Software Life Cycle Processes
§ ISO 15288, System Life Cycle Processes

Prior to joining the SEI, Mark was a Senior Systems Analyst for System Development Corporation (later
Unisys Defense Systems) at the Ballistic Missile Defense Advanced Research Center in Huntsville,
Alabama.

Mark received his master's degree in computer science from Vanderbilt University. He received his
bachelor's degree in mathematics and computer science from the University of Alabama in Huntsville.

Professional society memberships and certifications
§ Senior Member of the Institute of Electrical and Electronics Engineers (IEEE)
§ Senior Member of the American Society for Quality (ASQ)
§ ASQ Certified Software Quality Engineer

2

Using the Software CMM in Small Organizations

Mark C. Paulk

1. Introduction

The Software Engineering Institute (SEI) is a federally funded research and development center
established in 1984 by the U.S. Department of Defense with a broad charter to address the transition of
software engineering technology – the actual adoption of improved software engineering practices. The
SEI’s existence is, in a sense, the result of the “software crisis” – software projects that are chronically
late, over budget, with less functionality than desired, and of dubious quality. [Gibbs94] To be blunt,
much of the crisis is self-inflicted, as when a Chief Information Officer says, “I’d rather have it wrong
than have it late. We can always fix it later.” The emphasis in many organizations on achieving cost and
schedule goals, frequently at the cost of quality, once again teaches a lesson supposedly learned by
American industry over twenty years ago and now enshrined in Total Quality Management (TQM).

To quote DeMarco [DeMarco95], this situation is the not-surprising result of a combination of
factors:
§ “People complain to us because they know we work harder when they complain.”
§ “The great majority [report] that their software estimates are dismal… but they weren’t on the

whole dissatisfied with the estimating process.”
§ “The right schedule is one that is utterly impossible, just not obviously impossible.”

DeMarco goes on to observe that our industry is over-goaded, and the only real (perceived) option is to
pay for speed by reducing quality.

The lesson of TQM is that focusing on quality leads to decreases in cycle time, increases in
productivity, greater customer satisfaction, and business success. The challenge, of course, is defining
what “focusing on quality” really means and then systematically addressing the quality issues. Perhaps
the SEI’s most successful product is the Capability Maturity Model for Software (CMM), a roadmap for
software process improvement that has had a major influence on the software community around the
world [Paulk95]. The Software CMM defines a five-level framework for how an organization matures its
software process. These levels describe an evolutionary path from ad hoc, chaotic processes to mature,
disciplined software processes. The five levels, and the 18 key process areas that describe them in detail,
are summarized in Figure 1. The five maturity levels prescribe priorities for successful process
improvement, whose validity has been documented in many case studies and surveys [Herbsleb97,
Lawlis95, Clark97].

 © 1998 by Carnegie Mellon University.
 This work is sponsored by the U.S. Department of Defense.
 CMM is a registered trademark of Carnegie Mellon University.
 SM Capability Maturity Model, IDEAL, Personal Software Process, PSP, Team Software Process, and TSP
are service marks of Carnegie Mellon University.

3

Level Focus Key Process Areas
5

Optimizing
Continual process
improvement

Defect Prevention
Technology Change Management
Process Change Management

4
Managed

Product and process
quality

Quantitative Process Management
Software Quality Management

3
Defined

Engineering processes and
organizational support

Organization Process Focus
Organization Process Definition
Training Program
Integrated Software Management
Software Product Engineering
Intergroup Coordination
Peer Reviews

2
Repeatable

Project management
processes

Requirements Management
Software Project Planning
Software Project Tracking & Oversight
Software Subcontract Management
Software Quality Assurance
Software Configuration Management

1
Initial

Competent people and heroics

Figure 1. An overview of the Software CMM.

Although the focus of the current release of the Software CMM, Version 1.1, is on large
organizations and large projects contracting with the government, the CMM is written in a hierarchical
form that runs from “universally true” abstractions for software engineering and project management to
detailed guidance and examples. The key process areas in the CMM are satisfied by achieving goals,
which are described by key practices, subpractices, and examples. The rating components of the CMM
are maturity levels, key process areas, and goals. The other components are informative and provide
guidance on how to interpret the model. There are 52 goals and 316 key practices for the 18 key process
areas. Although the “requirements” for the CMM can be summarized in the 52 sentences that are the
goals, the supporting material comprises nearly 500 pages of information. The practices and examples
describe what good engineering and management practices are, but they are not prescriptive on how to
implement the processes.

The CMM can be a useful tool to guide process improvement because it has historically been a
common-sense application of Total Quality Management (TQM) concepts to software that was developed
with broad review by the software community. Its five levels are simplistic, but when intelligently used
they provide a lever for moving people such as the DOD program manager who bluntly stated, ““The
bottom line is schedule. My promotions and raises are based on meeting schedule first and foremost.”

While the Software CMM has been very influential around the world in inspiring and guiding
software process improvement, it has also been misused and abused by some and not used effectively by
others. The guidance provided by CMM v1.1 tends to be oriented towards large projects and large
organizations. Small organizations find this problematic, although the fundamental concepts are, we
believe, useful to any size organization in any application domain and for any business context.

Are meeting schedules, budgets, and requirements important to small projects? To small
organizations? It is arguable that in some environments, such as the commercial shrinkwrap segment,
cost is comparatively trivial when compared to the market share available to the first “good enough”
product to ship. If the employees of an organization are satisfied with the status quo, there is little that the
CMM can provide that will lead to true change; change occurs only when there is sufficient dissatisfaction
with the status quo that managers and staff are willing to do things differently. This is as true for small
organizations as large.

The CMM provides good advice on desirable management and engineering practices, with an
emphasis on management, communication, and coordination of the human-centric, design-intensive
processes that characterize software development and maintenance. It should be considered a guidebook

4

rather than a dictate, however, and the CMM user must apply professional judgment based on knowledge
and experience in software engineering and management, plus the application domains and business
environment of the organization. Because the CMM is focused on software, there are important aspects of
TQM that are not directly addressed in the model, such as people issues and the broader perspective of
systems engineering, which may also be crucial to the business. The CMM is a tool that should be used in
the context of a systematic approach to software process improvement, such as the SEI’s IDEAL model,
illustrated in Figure 2 [McFeeley96].

An opening question for software process improvement discussions should always be: Why is the
organization interested in using the Software CMM? If the desire is to improve process, with a direct tie to
business objectives and a willingness to invest in improvement, then the CMM is a useful and powerful
tool. If the CMM is simply the flavor of the month, then you have a prescription for disaster. If the driver
is customer concerns, ideally the concerns will lead to collaborative improvement between customer and
supplier. Sometimes the supplier’s concern centers on software capability evaluations (SCEs), such as are
performed by government acquisition agencies in source selection and contract monitoring. DOD policies
on the criteria for performing SCEs would exclude most small organizations and small projects
[Barbour96], but there are circumstances under which they may occur.

Many of the abuses of the Software CMM spring out of a fear of what “others” may do. If an
organization applies common sense to the guidance in the CMM as guidance rather than requirements,
then many of the interpretation problems of the model vanish. There are cases, however, where ignorance
of good engineering and management practices is the problem. This is particularly problematic for good
technical people who have been promoted into management positions, but who have little management
experience or training. This contributes to the problems identified by a DOD task force [DOD87]:
§ “Few fields have so large a gap between best current practice and average current practice.”
§ “The big problem is not technical... today's major problems with military software development are not

technical problems, but management problems.”

2. Small Organizations and Small Projects

The focus of this paper is on using the Software CMM correctly and effectively for small
organizations because I am frequently asked, “Can the Software CMM be used for small projects (or small
organizations)?” Yet the definition of “small” is challengingly ambiguous, as illustrated in Table 1. At
one time there was an effort to develop a tailored CMM for small projects and organizations, but the
conclusion of a 1995 CMM tailoring workshop was that we could not even agree on what “small” really
meant! The result was a report on how to tailor the CMM rather than a tailored CMM for small
organizations [Ginsberg95]. In a 1998 SEPG conference panel on the CMM and small projects
[Hadden98a], small was defined as “3-4 months in duration with 5 or fewer staff.” Brodman and Johnson
define a small organization as fewer than 50 software developers and a small project as fewer than 20
developers [Johnson98].

Table 1. Defining a “Small” Project

Variant of “Small” Number of People Amount of Time
Small 3-5 6 months
Very small 2-3 4 months
Tiny 1-2 2 months
Individual 1 1 week
Ridiculous! 1 1 hour

Note that small to tiny projects are in the range being addressed by Humphrey in his Team Software
ProcessSM (TSP) work, and the individual effort is in the range of the Personal Software ProcessSM (PSP)
[Humphrey95]. TSP and PSP illustrate how CMM concepts are being applied to small projects. The
“ridiculous” variant represents an interpretational problem. On the two occasions this variant has been
discussed, the problem was the definition of “project.” In both cases it was a maintenance environment,

5

and the organization’s “projects” would have been described as tasks in the CMM; the more accurate
interpretation for a CMM “project” was a baseline upgrade or maintenance release… but the terminology
clash was confusing.

One of the first challenges for small organizations in using the CMM is that their primary business
objective is to survive! Even after deciding the status quo is unsatisfactory and process improvement will
help, finding the resources and assigning responsibility for process improvement, and then following
through by defining and deploying processes is a difficult business decision. The small organization tends
to believe
§ we are all competent – people were hired to do the job, and we can’t afford training in terms of

either time or money
§ we all communicate with one another – “osmosis” works because we’re so “close”
§ we are all heroes – we do whatever needs to be done, the rules don’t apply to us (they just get in

the way of getting the job done), we live with short cycle times and high stress

Yet small organizations, just like large ones, will have problems with undocumented requirements,
the mistakes of inexperienced managers, resource allocation, training, peer reviews, and documenting the
product. Despite these challenges, small organizations can be extraordinarily innovative and productive.
Although there are massive problems that may require large numbers of people to solve, in general small
teams are more productive than large teams – they jell quicker and there are far fewer communication
problems. The question remains, however, is process discipline needed for small teams? To answer this
CMM mantra, we need to consider what discipline involves – and that leads to the heart of this paper’s
CMM interpretation discussion.

One last precursor, however. When assessing “small” organizations, it is advisable to use a
streamlined assessment process; the formality of a two-week CMM-based appraisal for internal process
improvement (CBA IPI) is probably excessive [Strigel95, Paquin98, Williams98]. The emphasis should
be on efficiently identifying important problems, even if some are missed due to lack of rigor. I
recommend focusing on the institutionalization practices that establish the organization’s culture:
planning, training, etc.; and explicitly tying process improvement to business needs.

3. Interpreting the CMM

Where does the Software CMM apply? The CMM was written to provide good software engineering
and management practices for any project in any environment. The model is described in a hierarchy

Maturity levels (5)
→ Key process areas (18)

→ Goals (52)
→ Key practices (316)

→ Subpractices and examples (many)

In my experience over the last decade of software process work, environments where interpretation
and tailoring of the CMM are needed include:
§ very large programs
§ virtual projects or organizations
§ geographically distributed projects
§ rapid prototyping projects
§ research and development organizations
§ software services organizations
§ small projects and organizations

The interpretation guidance for small projects and small organizations is also applicable to large
projects and organizations. Intelligence and common sense are required to use the CMM correctly and
effectively [Paulk96]. It is simultaneously true that all (software) projects are different and all (software)
projects are the same. We are required to balance conflicting realities: similarity versus uniqueness, order

6

versus chaos. Those who succeed build lasting organizations [Collins94] that are truly capable of
organizational learning [Senge90]; the rest must derive their success elsewhere.

The “normative” components of the CMM are maturity levels, key process areas, and goals. All
practices in the CMM are informative. Since the detailed practices primarily support large, contracting
software organizations, they are not necessarily appropriate, as written, for direct use by small projects
and small organizations – but they do provide insight into how to achieve the goals and implement
repeatable, defined, measured, and continually improving software processes. Thus we prevent such
“processes” as the estimating procedure that was simply “Go ask George.”

My most frequent interpretation recommendation is to develop a mapping between CMM terminology
and the language used by the organization. In particular, terms dealing with organizational structures,
roles and relationships, and formality of processes need to be mapped into their organizational equivalents
to prevent misunderstandings such as the “ridiculous one-hour project.” Examples of organizational
structures include “independent groups” such as quality assurance, testing, and configuration
management. Appropriate organizational terminology for roles such as project manager and project
software manager should be specified. People may fill multiple roles; for example, one person may be the
project manager, project software manager, SCM manager, etc. Explicitly stating this makes
interpretation of the CMM much simpler and more consistent.

Once the terminology issues are understood, we can think about what the “invariants” for a
disciplined process are and which practices depend on the context. In general we assume that key process
areas and goals are always relevant to any environment, with the exception of Software Subcontract
Management, which may be “not applicable” if there is no subcontracting. In contrast, I can conceive of
no circumstances under which Peer Reviews can be reasonably tailored out for a Level 3 organization.
This is a matter of competent professional judgment, although an alternative practice such as formal
methods might replace peer reviews. Professional judgment and trained, experienced assessors are
crucial, even for small organizations! [Abbott97]

I have never seen an environment where the following were not needed (though implementations
differ):
§ documented customer (system) requirements
§ communication with customer (and end users)
§ agreed-to commitments
§ planning
§ documented processes
§ work breakdown structure

Some practices, however, deal with “large-project implementations.” A small project is unlikely to
need an SCM group or a Change Control Board… but configuration management and change control are
always necessary. An independent SQA group may not be desirable, but objective verification that
requirements are satisfied always is. An independent testing group may not be established, but testing is
always necessary. We thus see that even for context-sensitive practices, the intent is critical even if the
implementation is radically different between small organizations and large. Many of the context-
sensitive, large-project implementation issues relate to organizational structure. If one reads the CMM
definition of “group,” it states that “a group could vary from a single individual assigned part time, to
several part-time individuals assigned from different departments, to several individuals dedicated full
time,” which is intended to cater to a variety of contexts.

In addition to these, specific questions that arise repeatedly, especially for small organizations, relate
to:
§ management sponsorship
§ measurement
§ SEPGs
§ “as is” processes
§ documented processes

7

§ tailoring
§ training
§ risk management
§ planning
§ peer reviews

Trite though it may seem, obtaining senior management sponsorship is a crucial component of
building organizational capability. As individuals, we can exercise professionalism and discipline within
our sphere of control, but if an organization as a whole is to change its performance, then its senior
management must actively support the change. Bottom-up improvement, without sponsorship and
coordination, leads to islands of excellence rather than predictably improved organizational capability. It
should be noted, however, that for small organizations, while the president (or founder) is the primary role
model, a respected “champion” frequently has the influence to move the entire organization – including
the president.

Management by fact is a paradigm shift for most organizations, which must be based on a
measurement foundation. To make data analysis useful, you need to understand what the data means and
how to analyze it meaningfully. Begin by collecting a simple set of useful data. You also have to be
sensitive to the potential for causing dysfunctional behavior by what you measure [Austin96]. The act of
measuring identifies what is important, but some things are difficult to measure. Management needs to
ensure that attention is visibly paid to all critical aspects of the project, including those difficult to
measure, not just those it is easy to measure and track.

In most organizations, a software engineering process group (SEPG) or some equivalent should be
formed to coordinate process definition, improvement, and deployment activities. One of the reasons for
dedicating resources to an SEPG is to ensure follow-through on appraisal findings. Many improvement
programs have foundered simply because no action resulted from the appraisal. Small organizations may
not have full-time SEPG staff, but the responsibility for improvement should be explicitly assigned and
monitored.

Begin with the “as is” process, not the “should be” process, to leverage effective practices and co-opt
resisters. Mandating top-down that everyone will follow the new “should be” process, particularly if not
developed by empowered workers, is a common recipe for failure. The “as is” process evolved because the
people doing the work needed to get the job done – even if that meant going around the system. The
“should be” process may, or may not, be feasible in the given culture and environment. With an
organizational focus on process management and improvement, the “as is” and “should be” processes will
converge, resulting in organizational learning.

Document your processes. The reasons for documenting a process (or product) are 1) to communicate
– to others now and perhaps to yourself later; 2) to understand – if you can’t write it down, you don’t
really understand; and 3) to encourage consistency – take advantage of repeatability. Documented
processes support organizational learning and prevent reinventing the wheel for common problems – they
put repeatable processes in place. Documentation is therefore important, but documents need not be
lengthy or complex to be useful. Keep the process simple because we live in a rapidly changing world.
Processes do not need to be lengthy or complex. The CMM is about doing things, not having things. A
1-2 page process description may suffice, and subprocesses and procedures can be invoked as needed and
useful. Use good software design principles, such as locality, information hiding, and abstraction, in
defining processes. Another useful rule of thumb is to track work at 2-3 tasks per week at most. Order is
not created by complex controls, but by the presence of a few guiding formulae or principles [Wheatley92,
page 11].

Processes need to be tailored to the needs of the project [Ginsberg95, Ade96]. Although standard
processes provide a foundation, each project will also have unique needs. Unreasonable constraints on
tailoring can lead to significant resistance to following the process. As Hoffman expresses it, “Don’t
require processes that don’t make sense.” [Hoffman98]

8

The degree of formality needed for processes is a frequent challenge for both large and small
organizations [Comer98]. Should there be separate procedure for each of the 25 key practices at Level 2
that mention “according to a documented procedure?” [Hadden98a, Pitterman98] The answer, as
discussed in section 4.5.5 “Documentation and the CMM” of the CMM book [Paulk95], is a resounding
NO! Packaging of documentation is an organizational decision.

Documented processes are of little value if they are not effectively deployed. To achieve buy-in for
the documented, process implementers must be part of process definition and improvement. Training, via
a wide variety of mechanisms, is critical to consistent and effective software engineering and
management. The reason for training is to develop skills. There are many “training mechanisms” other
than formal classroom training that can be effective in building skills. One that should be seriously
considered is a formal mentoring program. In this case, formality means going beyond assigning a
mentor and hoping that experience will rub off. Formality implies training people on how to mentor and
monitoring the effectiveness of the mentoring.

Training remains an issue after the initial deployment of a process or technology [Abbott97,
Williams98]. As personnel change, the incremental need for training may not be adequately addressed.
Mentoring and apprentice programs may suffice to address this issue, but they cannot be assumed to be
satisfactory without careful monitoring.

Management training is particularly important because ineffective management can cripple a good
team. People who are promoted to management because of their technical skills have to acquire a new set
of skills, including interpersonal skills [Mogilensky94, Curtis95, Weinberg94].

Some argue that software project management is really risk management. In one sense, the CMM is
about managing risk. We attempt to establish stable requirements so that we can plan and manage
effectively, but the business environment changes rapidly, perhaps chaotically. We try to establish an
island of order in the sea of software chaos, but both order and chaos have a place. As Wheatley suggests,
“To stay viable, open systems maintain a state of non-equilibrium, keeping the system in balance so that it
can change and grow.” [Wheatley92, page 78] Although we can establish processes that help us manage
the risks of a chaotic world, we also need to change and grow.

This implies that you should use an incremental or evolutionary life cycle. If you want to focus on risk
management, the spiral model may be the preferred life cycle model. If you want to focus on involving
the customer, perhaps rapid prototyping or joint application design would be preferable. Few long-term
projects have the luxury of the stable environment necessary for the waterfall life cycle to be the preferred
choice – yet it is probably the most common life cycle. Note, however, that for small projects, the
waterfall life cycle may be an excellent choice.

The #1 factor in successful process definition and improvement is “planfulness” [Curtis96].
Planning is needed for every major software process, but within the bounds of reasonable judgment, the
organization determines what is “major” and how the plan should be packaged. A plan may reside in
several different artifacts or be embedded in a larger plan.

Although you can argue over the best kind of peer review, the simple fact is that the benefits of peer
reviews far outweigh their costs. The data suggests some form of inspection should be used
[Ackerman89], but any form of collegial or disciplined review, such as structured walkthroughs, adds
significant value. Recognizing the value of peer reviews does not mean, unfortunately, that we do them
systematically. We need to “walk the walk,” not just “talk the talk.” This is very frustrating for technical
people who do not understand the emphasis on management in the CMM, yet poor management leads to
abandoning good engineering practices such as peer reviews.

There are other issues that have been identified for small organizations and projects. Paquin
[Paquin98] identifies five:
§ assessments
§ project focus

9

§ documentation
§ required functions
§ maturity questionnaire

We have not discussed the project focus of Level 2 as being a challenge for small organizations.
Software process improvement involves overhead that may be excessive for a small project. Some
recommend attacking small project process improvement from an organizational perspective [Comer98,
Paquin98], which is certainly a reasonable approach, even it does seem to mix Levels 2 and 3. This is a
consideration for any size organization or project [Paulk96]. Although an organization can achieve Level
2 without an organization process focus, the most effective organizational learning strategy will be one
that stresses organizational assets that lessen the overhead of projects. At the same time, it must be
recognized that there may be resistance to change at the project level, perhaps based on valid concerns,
and addressing resistance needs to be considered part of the organization’s learning process.

Required functions are an issue because there may be more CMM functions than there are people.
This issue has been discussed as terminology or role mapping. The maturity questionnaire is a concern
because it uses CMM terminology, thus it may be confusing to those filling it out. Expressing the
questionnaire in the terminology of the organization is thus a desirable precursor to even an informal
assessment or survey.

Abbott [Abbott97] identifies six keys to software process improvement in small organizations:
§ senior management support
§ adequate staffing
§ applying project management principles to process improvement
§ integration with ISO 9001
§ assistance from process improvement consultants
§ focus on providing value to projects and to the business

If applying good project management to software projects is the best way to ensure success, then the
same should be true for process improvement, which should be treated like any other project. ISO 9001 is
more frequently an issue for large organizations than small, so it is interesting that Abbott points this out
for his small company.

Brodman and Johnson [Johnson98] identify seven small organization/small project challenges:
§ handling requirements
§ generating documentation
§ managing projects
§ allocating resources
§ measuring progress
§ conducing reviews
§ providing training

Brodman and Johnson have developed a tailored version of the CMM for small businesses,
organizations, and projects [Johnson96, Johnson97, Brodman94]. Although the majority of the key practices
in the CMM were tailored in the LOGOS Tailored CMM, the changes can be characterized as:
§ clarification of existing practices
§ exaggeration of the obvious
§ introduction of alternative practices (particularly as examples)
§ alignment of practices with small business/small organization/small project structure and resources

Therefore the changes involved in tailoring the CMM for small organizations should not be considered
radical.

4. Abusing the Software CMM

Using the CMM correctly means balancing conflicting objectives. CMM-based appraisals require the
use of professional judgment. Although the CMM provides a significant amount of guidance in making

10

these judgments, removing subjectivity implies a deterministic, repetitive process that is not characteristic
of engineering design work. The CMM is sometimes referred to as a set of process requirements, but it
does not contain any “shall” statements. That is why it is an abuse of the CMM to check off
(sub)practices for conformance.

Some are unwilling or unable to interpret, tailor, or apply judgment. It is easy to mandate the key
practices, but foolhardy. This foolishness is frequently driven by paranoia about customer intentions and
competence. On more than one occasion I have heard someone say they were doing something that was
foolish, but they ware afraid that the customer was so ignorant or incompetent that they would be unable
to understand the rationale for doing things differently than literally described in the CMM. This is
particularly problematic for SCEs. It is true that judgments may differ – and sometimes legitimately so.
What is adequate in one environment may not suffice for a new project. That is why we recommend that
process maturity be included in risk assessment rather than using maturity levels to filter offerors
[Barbour96]. Small organizations should have less of a concern with this problem since it is unlikely that
SCEs for small organizations are cost-effective. It is more of a problem for large organizations with many
small projects.

Unfortunately I have no solution for this problem. “Standards” such as the CMM can help
organizations improve their software process, but focusing on achieving a maturity level without
addressing the underlying process can cause dysfunctional behavior. Maturity levels should be measures
of improvement, not goals of improvement. That is why we emphasize the need to tie improvement to
business objectives.

5. Conclusion

The bottom line is that software process improvement should be done to help the business – not for its
own sake. This is true for both large organizations and small. The best advice comes from Sanjiv Ahuja,
President of Bellcore: “Let common sense prevail!”

Building software is a design-intensive, creative activity. While the discipline of process is a crucial
enabler of success, the objective is to solve a problem, and this requires creativity. Software processes
should be repeatable, even if they are not repetitive. The balance between discipline and creativity can be
challenging [Glass95]. Losing sight of the creative, design-intense nature of software work leads to
stifling rigidity. Losing sight of the need for discipline leads to chaos.

The CMM represents a “common sense engineering” approach to software process improvement. Its
maturity levels, key process areas, goals, and key practices have been extensively discussed and reviewed
within the software community. While the CMM is neither perfect nor comprehensive, it does represent a
broad consensus of the software community and is a useful tool for guiding improvement efforts, and it
can be uses to help small software organizations improve their processes [Abbott97, Hadden98b,
Hoffman98, Pitterman98, Sanders98].

Small organizations should seriously consider PSP and TSP [Ferguson97, Hayes97]. Having taken
the PSP course, I can highly recommend it for building self-discipline. Note that the effect of reading the
book is not the same as taking the course and doing the work! Where the CMM addresses the
organizational side of process improvement, PSP addresses building the capability of individual
practitioners. The PSP course convinces the individual, based on his or her own data, of the value of a
disciplined, engineering approach to building software.

References

Abbott97 John J. Abbott, “Software Process Improvement in a Small Commercial Software
Company,” , Proceedings of the 1997 Software Engineering Process Group
Conference, San Jose, CA, 17-20 March 1997.

11

Ackerman89 A.F. Ackerman, L.S. Buchwald, and F.H. Lewski, “Software Inspections: An Effective
Verification Process,” IEEE Software, Vol. 6, No. 3, May 1989, pp. 31-36.

Ade96 Randy W. Ade and Joyce P. Bailey, "CMM Lite: SEPG Tailoring Guidance for Applying the
Capability Maturity Model for Software to Small Projects," Proceedings of the 1996 Software
Engineering Process Group Conference: Wednesday Papers, Atlantic City, NJ, 20-23 May
1996.

Austin96 Robert D. Austin, Measuring and Managing Performance in Organizations, Dorset
House Publishing, ISBN: 0-932633-36-6, New York, NY, 1996.

Barbour96 Rick Barbour, “Software Capability Evaluation Version 3.0 Implementation Guide for
Supplier Selection,” Software Engineering Institute, Carnegie Mellon University,
CMU/SEI-95-TR-012, April 1996.

Brodman94 J.G. Brodman and D.L. Johnson, "What Small Businesses and Small Organizations Say About the
CMM," Proceedings of the 16th International Conference on Software Engineering, IEEE
Computer Society Press, Sorrento, Italy, 16-21 May 1994, pp. 331-340.

Clark97 Bradford K. Clark, "The Effects of Software Process Maturity on Software Development Effort,"
PhD Dissertation, Computer Science Department, University of Southern California, August 1997.

Collins94 James C. Collins and Jerry I. Porras, Built to Last, HarperCollins Publishers, New York,
NY, 1994.

Curtis95 Bill Curtis, William E. Hefley, and Sally Miller, “People Capability Maturity Model,”
Software Engineering Institute, CMU/SEI-95-MM-02, September 1995.

Curtis96 Bill Curtis, "The Factor Structure of the CMM and Other Latent Issues," Proceedings of
the 1996 Software Engineering Process Group Conference: Tuesday Presentations,
Atlantic City, NJ, 20-23 May 1996.

DeMarco95 Tom DeMarco, Why Does Software Cost So Much?, ISBN 0-932633-34-X, Dorset
House, New York, NY, 1995.

DOD87 Department of Defense, "Report of the Defense Science Board Task Force on Military
Software," Office of the Under Secretary of Defense for Acquisition, Washington, D.C.,
September 1987.

Ferguson97 Pat Ferguson and Jeanie Kitson, “CMM-Based Process Improvement Supplemented by the
Personal Software Process in a Small Company Environment,” , Proceedings of the 1997
Software Engineering Process Group Conference, San Jose, CA, 17-20 March 1997.

Gibbs94 W. Wayt Gibbs, "Software's Chronic Chrisis," Scientific American, September 1994, pp.
86-95.

Ginsberg95 Mark Ginsberg and Lauren Quinn, “Process Tailoring and the Software Capability
Maturity Model,” Software Engineering Institute, CMU/SEI-94-TR-024, November 1995.

Glass95 Robert L. Glass, Software Creativity, Prentice Hall, Englewood Cliffs, NJ, 1995.

Hadden98a Rita Hadden, “How Scalable are CMM Key Practices?” Crosstalk: The Journal of Defense
Software Engineering, Vol. 11, No. 4, April 1998, pp. 18-20, 23.

12

Hadden98b Rita Hadden, “Key Practices to the CMM: Inappropriate for Small Projects?” panel, Rita
Hadden moderator, Proceedings of the 1998 Software Engineering Process Group
Conference, Chicago, IL, 9-12 March 1998.

Hayes97 Will Hayes and James W. Over, "The Personal Software Process (PSP): An Empirical
Study of the Impact of PSP on Individual Engineers," Software Engineering Institute,
Carnegie Mellon University, CMU/SEI-97-TR-001, December 1997.

Herbsleb97 James Herbsleb, David Zubrow, Dennis Goldenson, Will Hayes, and Mark Paulk, "Software Quality
and the Capability Maturity Model,” Communications of the ACM, Vol. 40, No. 6, June 1997, pp.
30-40.

Hoffman98 Leo Hoffman, “Small Projects and the CMM,” in “Key Practices to the CMM:
Inappropriate for Small Projects?” panel, Rita Hadden moderator, Proceedings of the
1998 Software Engineering Process Group Conference, Chicago, IL, 9-12 March 1998.

Humphrey95 Watts S. Humphrey, A Discipline for Software Engineering, ISBN 0-201-54610-8,
Addison-Wesley Publishing Company, Reading, MA, 1995.

Johnson96 Donna L. Johnson and Judith G. Brodman, The LOGOS Tailored Version of the CMM for
Small Businesses, Small Organizations, and Small Projects, Version 1.0, August 1996.

Johnson97 Donna L. Johnson and Judith G. Brodman, "Tailoring the CMM for Small Businesses, Small
Organizations, and Small Projects," Software Process Newsletter, IEEE Computer Society
Technical Council on Software Engineering, No. 8, Winter 1997, p. 1-6.

Johnson98 Donna L. Johnson and Judith G. Brodman, “Applying the CMM to Small Organizations
and Small Projects,” Proceedings of the 1998 Software Engineering Process Group
Conference, Chicago, IL, 9-12 March 1998.

Lawlis95 Patricia K. Lawlis, Robert M. Flowe, and James B. Thordahl, "A Correlational Study of the CMM
and Software Development Performance," Crosstalk: The Journal of Defense Software
Engineering, Vol. 8, No. 9, September 1995, pp. 21-25. Reprinted in Software Process Newsletter,
IEEE Computer Society Technical Council on Software Engineering, No. 7, Fall 1996, pp. 1-5.

McFeeley96 Bob McFeeley, "IDEAL: A User's Guide for Software Process Improvement," Software
Engineering Institute, CMU/SEI-96-HB-001, February 1996.

Mogilensky94 Judah Mogilensky and Betty L. Deimel, “Where Do People Fit in the CMM?,” American
Programmer, Vol. 7, No. 9, September 1994, pp. 36-43.

Paquin98 Sherry Paquin, “Struggling with the CMM: Real Life and Small Projects,” in “Key
Practices to the CMM: Inappropriate for Small Projects?” panel, Rita Hadden moderator,
Proceedings of the 1998 Software Engineering Process Group Conference, Chicago,
IL, 9-12 March 1998.

Paulk95 Carnegie Mellon University, Software Engineering Institute (Principal Contributors and
Editors: Mark C. Paulk, Charles V. Weber, Bill Curtis, and Mary Beth Chrissis), The
Capability Maturity Model: Guidelines for Improving the Software Process, ISBN 0-
201-54664-7, Addison-Wesley Publishing Company, Reading, MA, 1995.

Paulk96 Mark C. Paulk, "Effective CMM-Based Process Improvement," Proceedings of the 6th
International Conference on Software Quality, Ottawa, Canada, 28-31 October 1996,
pp. 226-237.

13

Pitterman98 Bill Pitterman, “Key Practices to the CMM: Inappropriate for Small Projects?” panel, Rita
Hadden moderator, Proceedings of the 1998 Software Engineering Process Group
Conference, Chicago, IL, 9-12 March 1998.

Sanders98 Marty Sanders, “Small Company Action Training and Enabling,” in The CMM and Small
Projects, Society for Software Quality Roundtable, Washington, DC, 26 January 1998.

Senge90 Peter M. Senge, The Fifth Discipline: The Art & Practice of the Learning
Organization, Doubleday/Currency, New York, NY, 1990.

Strigel95 Wolfgang B. Strigel, "Assessment in Small Software Companies," Proceedings of the 1995 Pacific
Northwest Software Quality Conference, 1995, pp. 45-56.

Weinberg94 Gerald M. Weinberg, Quality Software Management, Volume 3: Congruent Action,
ISBN 0-932633-28-5, Dorset House, New York, NY, 1994.

Wheatley92 Margaret J. Wheatley, Leadership and the New Science, Berrett-Koehler Publishers, San
Francisco, CA, 1992.

Williams98 Louise B. Williams, “SPI Best Practices for ‘Small’ Projects,” in The CMM and Small
Projects, Society for Software Quality Roundtable, Washington, DC, 26 January 1998.

1

Using the Software CMM With Good Judgment

MARK C. PAULK
Software Engineering Institute
Carnegie Mellon University

4500 Fifth Avenue
Pittsburgh, PA 15213

Telephone: +1 (412) 268-5794
Fax: +1 (412) 268-5758

Internet: mcp@sei.cmu.edu –or– Mark.Paulk@ieee.org

Abstract

The Capability Maturity Model for Software (CMM) developed by the Software Engineering Institute
(SEI) has had a major influence on software process and quality improvement around the world.
Although the CMM has been widely adopted, there remain many misunderstandings about how to use it
effectively for business-driven software process improvement, particularly for small organizations and
small projects. This paper discusses how to use the CMM correctly and effectively in any business
environment, with examples for small organizations, rapid prototyping projects, maintenance shops, R&D
outfits, and other environments. The conclusion is that the issues associated with interpreting the
Software CMM are essentially the same for any organization interested in improving its software
processes – the differences are of degree rather than kind. Using the Software CMM effectively and
correctly requires professional judgment and an understanding of how the CMM is structured to be used
for different purposes.

Key Words: Capability Maturity Model, CMM, software capability evaluation, software process
assessment, small organizations, small projects, software process improvement.

Published in ASQ Software Quality Professional, Vol. 1, No. 3, June 1999, pp. 19-29.

1. Introduction

The Software Engineering Institute (SEI) is a federally funded research and development center
established in 1984 by the U.S. Department of Defense (DOD) with a broad charter to improve the state of
the practice in software engineering. The SEI’s existence is, in a sense, the result of the “software crisis”
– software projects that are chronically late, over budget, with less functionality than desired, and of
dubious quality.

Much of the software crisis is self-inflicted, as when a Chief Information Officer says, “I’d rather
have it wrong than have it late. We can always fix it later.” The emphasis in all too many organizations
is on achieving cost and schedule goals, frequently at the cost of quality. To quote DeMarco
[DeMarco95], this situation is the not-surprising result of a combination of factors:
§ “People complain to us [software developers] because they know we work harder when they

complain.”
§ “The great majority [report] that their software estimates are dismal… but they weren’t on the

whole dissatisfied with the estimating process.”
§ “The right schedule is one that is utterly impossible, just not obviously impossible.”

DeMarco goes on to observe that our industry is over-goaded, and the only real (perceived) option is to
pay for speed by reducing quality. This violates the principle of Total Quality Management (TQM) that
focusing on quality leads to decreases in cycle time, increases in productivity, greater customer
satisfaction, and business success. Admittedly the challenge of determining “good enough” is an on-going

2

debate within the software community and a delicate business decision, but the quality focus is central to
the SEI’s work.

Perhaps the SEI’s most successful product is the Capability Maturity Model for Software (CMM), a
roadmap for software process improvement that applies TQM ideas to software and has had a major
influence on the software community around the world [Paulk95]. The Software CMM defines a five-
level framework for how an organization matures its software process capability. These levels describe an
evolutionary path from ad hoc, chaotic processes to mature, disciplined software processes. The five
levels, and the 18 key process areas that describe them in detail, are summarized in Figure 1.

The purpose of this paper is to discuss how the CMM can be effectively used in a wide range of
environments, with a focus on small organizations but also including examples for rapid prototyping
projects, maintenance shops, and R&D outfits. This paper summarizes the observations and
recommendations of the author, based on over a decade of experience in CMM-based assessments and
process improvement. The recommendations may appear dogmatic, but it seems unlikely that many will
disagree with their intent, although there is likely to be some debate over what constitutes an “adequate”
implementation in any given environment.

Level Focus Key Process Areas
5

Optimizing
Continual process
improvement

Defect Prevention
Technology Change Management
Process Change Management

4
Managed

Product and process
quality

Quantitative Process Management
Software Quality Management

3
Defined

Engineering
processes and
organizational
support

Organization Process Focus
Organization Process Definition
Training Program
Integrated Software Management
Software Product Engineering
Intergroup Coordination
Peer Reviews

2
Repeatable

Project management
processes

Requirements Management
Software Project Planning
Software Project Tracking & Oversight
Software Subcontract Management
Software Quality Assurance
Software Configuration Management

1
Initial

Competent people and heroics

Figure 1. An overview of the Software CMM.

Although the focus of the current release of the Software CMM, Version 1.1, is on large
organizations and large projects contracting with the government, the CMM is written in a hierarchical
form that runs from “universally true” abstractions for software engineering and project management to
detailed guidance and examples. The key process areas in the CMM are satisfied by achieving goals,
which are described by key practices, subpractices, and examples. The rating components of the CMM
are maturity levels, key process areas, and goals. The other components are informative and provide
guidance on how to interpret the model. Although the “requirements” for the CMM can be summarized in

 © 1998 by Carnegie Mellon University.
 This work is sponsored by the U.S. Department of Defense.
 CMM and Capability Maturity Model are registered trademarks of Carnegie Mellon University.
 SM IDEAL, Personal Software Process, PSP, Team Software Process, and TSP are service marks of
Carnegie Mellon University.

3

the 52 sentences that are the goals, the supporting material comprises nearly 500 pages of information.
The practices and examples describe what good engineering and management practices are, but they are
not prescriptive on how to implement the processes.

Although key practices are not requirements, they are intended to be generally applicable. The goals
of each key process area address end-states, and each key practice contributes to achieving one or more
goals. Although they set expectations, the key practices are not required; there may be alternative
methods for achieving a goal. Assessment teams usually find a few key practices, typically 3-5, where
“alternate implementations” are used that satisfy the goals of a key process area. This is a large enough
percentage of the 316 key practices in the CMM that the need for judgment is clear, but small enough to
indicate that the key practices are generally good guidance. About 10-15% of the key practices usually
have to be "interpreted” – the team has to discuss at length whether an implementation is adequate as
opposed to arriving at a quick consensus. Key practices are not requirements and there may be alternate
implementations, but this does not abrogate the responsibility to make informed, reasonable, and
professional judgments about each key practice and its associated goals – and assessment findings may be
written against key practices and subpractices when an implementation is judged inadequate.

Although the CMM is a common-sense application of TQM concepts to software that was developed
with broad review by the software community, small organizations may find the large organization/project
orientation of the CMM problematic. Its fundamental concepts are, we believe, useful to any size
organization in any application domain and for any business context. Are meeting schedules, budgets,
and requirements important to small projects? To small organizations? If the employees of an
organization are satisfied with the status quo, there is little that the CMM can provide that will lead to
true change. Change occurs only when there is sufficient dissatisfaction with the status quo that managers
and staff are willing to do things differently. This is as true for small organizations as large.

Intelligence and common sense are needed to use the CMM correctly and effectively [Paulk96], and
this is true in all environments. Based on over a decade’s experience in software process work,
environments where interpretation and tailoring of the CMM are needed include
§ very large programs, with many organizations interacting
§ virtual projects or organizations
§ geographically distributed projects
§ rapid prototyping projects
§ research and development (R&D) organizations
§ maintenance (sustaining engineering) shops
§ software services organizations
§ small projects and organizations

2. Small Organizations and Small Projects

The emphasis of this paper on small organizations is due to a frequently asked question, “Can the
Software CMM be used for small projects (or small organizations)?” Yet the definition of “small” is
challengingly ambiguous, as illustrated in Table 1. At one time there was an effort to develop a tailored
CMM for small projects and organizations, but the conclusion of a 1995 CMM tailoring workshop was
that we could not even agree on what “small” really meant. The result was a report on how to tailor the
CMM rather than a tailored CMM for small organizations [Ginsberg95]. In a 1998 SEPG conference
panel on the CMM and small projects [Hadden98b], small was defined as “3-4 months in duration with 5
or fewer staff.” Brodman and Johnson define a small organization as fewer than 50 software developers
and a small project as fewer than 20 developers [Brodman96, Johnson97].

4

Table 1. Defining a “Small” Project

Variant of “Small” Number of People Duration
Small 3-5 6 months
Very small 2-3 4 months
Tiny 1-2 2 months
Individual 1 1 week
Ridiculous! 1 1 hour

Small to tiny projects are in the range being addressed by Humphrey in his Team Software ProcessSM

(TSP) work, and the individual effort is directly addressed by the Personal Software ProcessSM (PSP)
[Humphrey95]. TSP and PSP illustrate how CMM concepts are being applied to small projects. The
“ridiculous” variant represents an interpretational problem. On the two occasions this variant has been
discussed, the problem was the definition of “project.” In both cases it was a maintenance environment,
and the organization’s “projects” would have been described as tasks in the CMM; the more accurate
interpretation for a CMM “project” was a baseline upgrade or maintenance release, but there was a
confusing terminology clash.

Appropriately interpreted, the CMM is being effectively used in organizations with less than 15
employees and for projects with as few as two people. The SEI’s maturity profile as of December 1998
shows 27 organizations with fewer than 25 employees that have performed CBA IPI assessments.

Small organizations, just like large ones, will have problems with undocumented requirements, the
mistakes of inexperienced managers, resource allocation, training, peer reviews, and documenting the
product. The challenge of providing resources for process improvement – both to formally identify
problems and systematically address them – will frequently result in these resources being part-time rather
than full-time. The business question is whether the kind of process discipline advocated by the CMM is
really needed by small projects and organizations. To answer this question, we need to consider what
discipline involves – and that leads to the heart of this paper’s CMM interpretation discussion.

3. Improvement Issues from the IDEAL Perspective

The CMM is a tool that should be used in the context of a systematic approach to software process
improvement, such as the SEI’s IDEAL model [McFeeley96], which depicts the activities of an
improvement program in five phases:

I Initiating (the improvement program)
D Diagnosing (the current state of practice)
E Establishing (the plans for the improvement program)
A Acting (on the plans and recommended improvements)
L Learning (the lessons learned and the business results of the improvement effort)

Obtaining senior management sponsorship in the Initiating phase is a crucial component of building
organizational capability. As individuals, we can exercise professionalism and discipline within our
sphere of control, but if an organization as a whole is to change its performance, then its senior
management must actively support the change. Bottom-up improvement, without sponsorship and
coordination, leads to islands of excellence rather than predictably improved organizational capability.
For small organizations, while the president (or founder) is the primary role model, a respected
“champion” frequently has the influence to move the entire organization – including the president.

An opening question should always be
Why is the organization interested in using the Software CMM?

If the desire is to improve process, with a direct tie to business objectives and a willingness to invest in
improvement, then the CMM is a useful and powerful tool. If the CMM is simply the flavor of the month,
then you have a prescription for disaster. If the driver is customer concerns, ideally the concerns will lead

5

to collaborative improvement between customer and supplier. Sometimes the supplier’s concerns center
on software capability evaluations (SCEs), such as are performed by government acquisition agencies in
source selection and contract monitoring. DOD policies on the criteria for performing SCEs would
exclude most small organizations and small projects [Barbour96]. There are circumstances, however,
under which SCEs may still occur, such as field training an evaluation team.

The relationship to any existing TQM programs should be identified in the Initiating phase. Software
process improvement efforts should be aligned with quality improvement initiatives since the goals are the
same, even if the scopes initially differ. TQM programs are relatively uncommon in small organizations,
although following the principles of TQM is always recommended.

When assessing “small” organizations in the Diagnosing phase, it is advisable to use a streamlined
assessment process. A full-blown CMM-based appraisal for internal process improvement (CBA IPI)
[Dunaway96], with its criteria for validity, accuracy, corroboration, consistency, and sufficiency, can last
two weeks, which is probably excessive for a small organization [Strigel95, Paquin98, Williams98]. The
emphasis should be on efficiently identifying important problems, even if some are missed due to lack of
rigor. The CBA IPI assessment method can be tailored down, however, and there are a number of other
assessment methods, such as Interim Profile, that may be more appropriate [Whitney94,
Daskalantonakis94].

Perhaps the best recommendation regarding CMM interpretation is to develop a mapping between
CMM terminology and the language used by the organization. In particular, terms dealing with
organizational structures, roles and relationships, and formality of processes need to be mapped into their
organizational equivalents. Examples of organizational structures include “independent groups” such as
quality assurance, testing, and configuration management. Appropriate organizational terminology for
roles such as project manager and project software manager should be specified. People may fill multiple
roles; for example, one person may be the project manager, project software manager, SCM manager, etc.
Explicitly stating this makes interpretation of the CMM much simpler and more consistent.

Small organizations have an opportunity in the Establishing phase that large organizations would
find difficult – combining Levels 2 and 3. Level 2 focuses on projects, yet a small organization should
find it comparatively easy to develop organizational standards at the same time that it is defining its
project-level processes since there is much less “cultural inertia” to overcome, even when significant
cultural change occurs. The most effective organizational learning strategy is likely to be one stressing
organizational assets that lessen the overhead of projects. In large organizations resistance to change
makes this strategy problematic; worker participation in improvement activities is crucial to deployment
but more difficult to orchestrate. Even in small organizations there may be resistance to change, perhaps
based on valid concerns, and addressing resistance should be part of the organization’s learning process.
Similarly, even small organizations have to focus on the “vital few” improvement issues, especially given
their limited resources, which reemphasizes the Level 2 priorities for improvement.

During the Acting phase organizations should take advantage of the more detailed components of the
CMM: subpractices and examples. These informative components are useful in characterizing an
adequate process, yet they do not specify a particular implementation. For example, the estimating
practices in Software Project Planning have subpractices on using historical data, but they do not specify a
cost model, such as COCOMO, Price-S, or Slim, or even state that a cost model should be used.

For a small organization, the loop to the Learning phase may be much tighter than for large
organizations. A one-year improvement cycle may be realistic, where large organizations will more
typically take 2-3 years between assessments.1 This reinforces the need for a low-overhead assessment
process.

1 Note that results for specific improvement actions should be observed well before the organizational
improvement cycle delineated by an assessment rolls around.

6

4. Where Does the Software CMM Apply?

The CMM is intended to provide good software engineering and management practices for any
project in any environment. The model is described in a hierarchy, as shown in Figure 2.

Maturity levels (5 levels)
→ Key process areas (18 KPAs)

→ Goals (52 goals)
→ Key practices (316 key practices)

→ Subpractices and examples (many)

Figure 2. The CMM structural hierarchy.

The “normative” components of the CMM are maturity levels, key process areas, and goals. All
practices in the CMM are informative as opposed to normative. Since the detailed practices primarily
support large, contracting software organizations, they are not necessarily appropriate, as written, for
direct use by small projects and small organizations – but they do provide insight into how to achieve the
goals and implement repeatable, defined, measured, and continually improving software processes. This
emphasizes the need for reasonable and professional practices and helps prevent such “processes” as the
estimating procedure that was simply “Go ask George.”

In general, key process areas and goals are always relevant to any environment, with the exception of
Software Subcontract Management, which may be “not applicable” if there is no subcontracting. In
contrast, there are no circumstances under which Peer Reviews could be reasonably tailored out for a
Level 3 organization. Deciding what is “not applicable” or an “alternate implementation” is a matter of
competent professional judgment, implying a need for trained, experienced assessors and process definers,
even for small organizations.

4.1 Getting to Level 2

At Level 2, the CMM emphasis is on managing software projects. The question for small
organizations is whether the ability to manage projects is a crucial business concern. If the organization is
doing contract work, the answer is almost certainly yes. If the organization is doing commercial
shrinkwrap development, this issue is more debatable. Will bad management lead to serious business
consequences? For many successful shrinkwrap software companies, no new product in company history
has ever been finished on time or provided the functionality originally envisaged [Moody95]. It is
unlikely, however, that bad management has contributed to the success of the thriving shrinkwrap
companies, and it has certainly contributed to the failure of many that have not survived.

Requirements Management. Documented customer (system) requirements and communication with
customer (and end users) are always important, although the documentation may be as simple as a one-
page letter of intent. Documenting the requirements can be a challenge in a rapid prototyping
environment or for R&D. The requirements may be scattered across several prototypes and actively
evolving. This is acceptable so long as the history is maintained, and the requirements are consolidated
before getting out of hand, i.e., too many prototypes capturing different potential requirements or before
transitioning to full-scale development. The customer requirements / prototype functionality are similar to
a lab notebook in the R&D context. Always document commitments and the requirements for the work to
be performed – these documents are crucial for clarification and conflict resolution as the project
progresses.

Software Project Planning. The #1 factor in successful process definition and improvement is
“planfulness” [Curtis96]. Planning is needed for every major software process, but within the bounds of
reasonable judgment, the organization determines what “major” means and how the plan should be
packaged. A plan may reside in several different artifacts or be embedded in a larger plan.

7

Maintenance work is frequently level-of-effort. Problem reports and change requests are used to
identify tasks that are performed in some identified priority order. A “project” is the next baseline update
or major revision, which consists of a collection of changes to the basedlined software that must be
carefully controlled. Similarly, R&D projects are likely to be level-of-effort. Examples of key practices
that may provide minimal value to small projects include the size estimating and risk identification
practices – and both may be critical for many small projects. For small projects, however, effort and
schedules may be estimated directly from a work breakdown structure, and the consequences of the project
failing may be relatively minor.

A project management plan that includes a work breakdown structure and any external commitments
is always important, although it may be simple and concise. It is also a good practice to document
internal commitments, especially those that cross organizational boundaries.

Software Project Tracking & Oversight. Knowing what you have accomplished versus what you
have committed to is always important. Admittedly, managers have to be careful not to over-control –
asking for more progress data than provides true insight. Gantt charts and earned value are popular and
reasonably effective mechanisms for tracking progress, with two caveats. First, work packages should be
binary - done or not done - since detailed estimates of work completed (e.g., we’re 87% done) are
notoriously inaccurate. This has implications for how the packages should be defined. A useful rule of
thumb is to track work at a granularity somewhere between 2-3 weeks for a work package and 2-3 work
packages per week. Second, remember the critical path to project completion (and possible resource
conflicts) when tracking progress.

Management by fact is a paradigm shift for most organizations, which must be based on a
measurement foundation. To make data analysis useful, you need to understand what the data means and
how to analyze it, which implies collecting a simple set of useful data. The effort of collecting the data
needs to be minimized so the small organization is not overwhelmed by overhead. This is also a problem
for large organizations, but the margin for error is razor-thin for small organizations.

Software Subcontract Management. For small organizations, rapid prototyping projects,
maintenance shops, and R&D outfits, Software Subcontract Management will usually be not applicable.

Software Quality Assurance. A small project is unlikely to have an independent SQA group, but it
is always important to objectively verify that requirements are satisfied, including the process
requirements in standards and procedures. It is usually a good idea to embed the QA function in your
process via checklists, tools, etc., even if an independent SQA group exists.

Software Configuration Management. A small project is unlikely to need an SCM group or a
Change Control Board, but configuration management and change control are always important. Always
baseline work products and control changes to them. Microsoft, for example, uses daily builds to ensure
that a stable baseline always exists [McConnell96].

Closing Level 2 Thoughts. Many of the context-sensitive, large-project implementation issues relate
to organizational structure. Similar to the SCM and SQA examples above, an independent testing group
may not be established, but testing is always necessary. The intent of a practice is important even if the
implementation is radically different between small organizations and large. If one reads the CMM
definition of “group,” it states that “a group could vary from a single individual assigned part-time, to
several part-time individuals assigned from different departments, to several individuals dedicated full-
time.” This flexibility (or ambiguity) is intended to cater to a variety of contexts. “Independence” is a
consequence of organizational structure. “Objectivity” is the concept emphasized in the key process area
goals.

8

4.2 Getting to Level 3

Organization Process Focus. At Level 3, the CMM emphasis is on consistency and organizational
learning. In most organizations, a software engineering process group (SEPG) or some equivalent should
be formed to coordinate process definition, improvement, and deployment activities. One of the reasons
for dedicating resources to an SEPG is to ensure follow-through on appraisal findings. Many improvement
programs have foundered simply because no action resulted from the appraisal. Small organizations may
not have full-time SEPG staff, but the responsibility for improvement should be explicitly assigned and
monitored. Thinking about the way you work and how to do better is always important, regardless of the
models or standards that you may use to structure your thoughts. Always assign responsibility, authority,
and accountability for process definition and improvement, whether an SEPG is formed or not.

Organization Process Definition. The reasons for documenting a process (or product) are to
1) communicate – to others now and perhaps to yourself later;
2) understand – if you can’t write it down, you don’t really understand it; and
3) encourage consistency – take advantage of repeatability.

This is a general characteristic of learning organizations – even small, R&D, or maintenance
organizations. Documented processes are always important, and important processes should always be
documented.

Documented processes support organizational learning and prevent reinventing the wheel for
common problems – they put repeatable processes in place. Documents do not, however, need to be
lengthy or complex to be useful. Keep the process simple. The CMM is about doing things, not having
things. A 1-2 page process description may suffice, and subprocesses and procedures can be invoked as
needed and useful. Use good software design principles, such as locality, information hiding, and
abstraction, in defining processes.

The degree of formality needed for processes is a frequent challenge for both large and small
organizations [Comer98, Hadden98a, Pitterman98, Sanders98]. Should there be separate procedures for
each of the 25 key practices at Level 2 that mention “according to a documented procedure”]? The
answer, as discussed in section 4.5.5 “Documentation and the CMM” of The Capability Maturity
Model: Guidelines for Improving the Software Process [Paulk95], is a resounding NO! Packaging of
documentation is an organizational decision.

Training Program. The reason for training is to develop skills. There are many “training
mechanisms” other than formal classroom training that can be effective in building skills. One that
should be seriously considered is a formal mentoring program. In this case, formality means going
beyond assigning a mentor and hoping that experience will rub off. Formality implies training people on
how to mentor and monitoring the effectiveness of the mentoring.

Training remains an issue after the initial deployment of a process or technology [Abbott97,
Williams98]. As personnel change, the incremental need for training may not be adequately addressed.
Mentoring and apprentice programs may suffice to address this issue, but they cannot be assumed to be
satisfactory without careful monitoring.

Integrated Software Management. The thoughtful use of organizational assets (overcoming the
“not-invented here” syndrome) is always important. Processes need to be tailored to the needs of the
project [Ginsberg95, Ade96, Ahlgren96]. Although standard processes provide a foundation, most projects
will also have unique needs. Unreasonable constraints on tailoring can lead to significant resistance to
following the process. As Hoffman expresses it, “Don’t require processes that don’t make sense”
[Hoffman98]. Use organizational assets, but use them intelligently.

Some argue that software project management is really risk management. This implies that you
should use an incremental or evolutionary life cycle. If you want to focus on risk management, the spiral
model may be the preferred life cycle model. If you want to focus on involving the customer, perhaps

9

rapid prototyping or joint application design would be preferable. Few long-term projects have the luxury
of the stable environment necessary for the waterfall life cycle to be the preferred choice – yet it is
probably the most common life cycle. For small projects, however, the waterfall life cycle may be an
excellent choice. In some cases, the risk to the organization if a small project fails is minimal, and formal
risk management is not worth the overhead. R&D organizations, on the other hand, are continually
pushing the envelope as they explore new areas, thus their intrinsic life cycle is evolutionary.

Software Product Engineering. Although some may disagree on the need for requirements analysis
and design in small projects, thoughtfully defined and consistent software life cycle processes –
requirements analysis, design, coding, testing, installation, operations, and maintenance – are always
important. Always spend significant time on requirements analysis, design, and test planning. Always
consider the entire life cycle in planning a development project.

Intergroup Coordination. For small projects and organizations, Intergroup Coordination may
appear inapplicable because there are no “other groups” to coordinate with. This misses the point that
this key process area is about communicating with the customer, documenting and tracking commitments,
and resolving conflicts, which are as crucial for individuals as for different organizational entities.
Communication and coordination are always important – even for one-person projects, communication
over time and perhaps with those who succeed you is important.

Peer Reviews. Although you can argue over the best kind of peer review, the simple fact is that the
benefits of peer reviews far outweigh their costs. Most effective is some variant of inspections, but any
form of collegial or disciplined review, such as structured walkthroughs, adds significant value. R&D
organizations reflect this by emphasizing the scientific method. Small organizations, however, may be
more vulnerable to schedule pressure. Unfortunately, recognizing the value of peer reviews does not mean
that we do them systematically, thus their placement at Level 3. Peer reviews are always important, and
even recommended for Level 1 projects where the chaotic environment makes their use inconsistent.

4.3 Getting to Levels 4 and 5

Any organization embarking on Levels 4 and 5 needs little guidance in CMM interpretation
principles. Small organizations should seriously consider the Personal Software ProcessSM (PSPSM) and
Team Software ProcessSM (TSPSM) to bootstrap their process improvement efforts to Level 5 [Ferguson97,
Hayes97]. Where the CMM addresses the organizational side of process improvement, PSP addresses
building the capability of individual practitioners. The PSP course convinces the individual professional,
based on his or her own data, of the value of a disciplined, engineering approach to building software.
PSP and TSP take the individual and the team to a Level 5 process capability that the organization can
leverage.

4.4 Miscellaneous Improvement Issues

Paquin identifies five issues for small organizations and projects [Paquin98]:
§ assessments
§ project focus
§ documentation
§ required functions
§ maturity questionnaire

Since there are no “shall” statements in the CMM, there are no “required functions,” but the CMM
may describe more functions than there are people to fill the slots. This issue has been discussed as
terminology or role mapping. The maturity questionnaire is a concern because it uses CMM terminology,
which may be unclear to the people filling out the questionnaire. Expressing the questionnaire in the
terminology of the organization is therefore a desirable precursor to even an informal assessment or

10

survey. Assessments should be “light weight,” and documentation should focus on minimum essential
information.

Abbott identifies six keys to software process improvement in small organizations [Abbott97]:
§ senior management support
§ adequate staffing
§ applying project management principles to process improvement
§ integration with ISO 9001
§ assistance from process improvement consultants
§ focus on providing value to projects and to the business

Senior management support and adequate staffing are universal issues. If applying good project
management to software projects is the best way to ensure success, then the same should be true for
process improvement, which should be treated like any other project. ISO 9001 is more frequently an
issue for large organizations than small, so it is interesting that Abbott points this out for his small
company. The advise to use process improvement consultants can be problematic. The experience and
expertise of a good consultant is unquestionably of great value, yet skilled consultants charge a premium
price – frequently beyond what a small organization can afford. Unskilled consultants can be actively
detrimental. Although none of the process guidance in the CMM or similar models and standards is
particularly “rocket science,” the pitfalls in changing individual, team, and organizational behaviors are
non-trivial. There are no easy answers to this issue.

Brodman and Johnson identify seven small organization/small project challenges [Johnson97]:
§ handling requirements
§ generating documentation
§ managing projects
§ allocating resources
§ measuring progress
§ conducting reviews
§ providing training

They have also developed a tailored version of the CMM for small businesses, organizations, and
projects [Brodman96]. Although the majority of the key practices (but very few of the goals) in the CMM
were tailored in the LOGOS Tailored CMM, they characterize these changes as:
§ clarification of existing practices
§ exaggeration of the obvious
§ introduction of alternative practices (particularly as examples)
§ alignment of practices with small business/small organization/small project structure and

resources
Their analysis therefore agrees that the changes involved in tailoring the CMM for small organizations
should not be considered radical.

5. Conclusion

To summarize this discussion and capture the essence of Level 3 in language that may communicate
better with small projects and organizations, the recommendations for effective software processes
include:
§ document the requirements
§ define a work breakdown structure and plan the work
§ track significant accomplishments (no more than 2 or 3 per week)
§ build the SQA function into the process (as a “buddy system” or part of peer reviews, with an

escalation mechanism to resolve conflicts)
§ determine how changes to work products will be identified and approved
§ establish a configuration management system
§ assign responsibility for defining and improving specific processes

11

§ concisely document both management and engineering processes and standardize them
§ document commitments and systematically resolve conflicts within the project
§ install a peer review process, with a preference for inspections

This may seem (and be) simplistic, but this is the core of a disciplined process that with a philosophy
of continual process improvement can lead even a small software organization to Level 5.

Many of the abuses of the Software CMM spring from a fear of what “others” may do, such as
evaluate simple or alternative implementations adversely, thus leading to loss of a contract. If an
organization applies common sense to the guidance in the CMM as guidance rather than requirements,
then many of the interpretation problems for the model vanish. Although the CMM provides a significant
amount of guidance in making judgments, removing subjectivity implies a deterministic, repetitive
process that is not characteristic of engineering design work. That is why it is an abuse of the CMM to
check off practices for conformance. When the CBA IPI method requires collecting data on each key
practice2, it is for making consistent and comprehensive judgments; it is not implying a requirement that
each key practice be literally implemented. Even weaknesses against a key practice that result in findings
do not necessarily result in failing to achieve a goal.

Some are unwilling or unable to interpret, tailor, or apply judgment. It is easy to mandate the key
practices, but foolhardy, even when driven by concerns about customer intentions and competence. On
more than one occasion I have heard someone say they were doing something that was foolish, but they
were afraid that the customer was so ignorant or incompetent that they would be unable to understand the
rationale for doing things differently than literally described in the CMM. This is particularly
problematic if SCEs by the customer are feared. It is true that judgments may differ – and sometimes
legitimately so. What is adequate in one environment may not suffice for a new project. That is why we
recommend that process maturity be included in risk assessment during source selection, rather than using
maturity levels to filter offerors [Barbour96].

Unfortunately there is no simple solution to this problem. In the SEI’s CMM training, these points
are repeatedly emphasized, but the problems persist. “Standards” such as the CMM can help
organizations improve their software process, but focusing on achieving a maturity level without
addressing the underlying process can cause dysfunctional behavior. Maturity levels should be measures
of improvement, not goals of improvement. That is why we emphasize the need to tie improvement to
business objectives.

The challenges in interpreting the CMM appropriately for different environments differ in degree
rather than in kind. The bottom line is that software process improvement should be done to help the
business – not for its own sake. The best advice comes from Sanjiv Ahuja, President of Bellcore: “Let
common sense prevail!” The CMM is a proven tool to support process appraisal and software process
improvement in a wide range of environments3, but it must be used with professional judgment and
common sense to be truly effective.

References

Abbott97 John J. Abbott, “Software Process Improvement in a Small Commercial Software
Company,” , Proceedings of the 1997 Software Engineering Process Group
Conference, San Jose, CA, 17-20 March 1997.

2 The CBA IPI method requires that each Activity Performed be investigated and the key practices in the
other common features be sampled. I recommend investigating each key practice rather than just
sampling the practices in the institutionalization common features.
3 There are far too many case studies and analyses of CMM-based improvement to cite here, but those
interested may wish to examine http://www.sei.cmu.edu/cmm/cmm.articles.html#biblio.case.studies.

12

Ade96 Randy W. Ade and Joyce P. Bailey, "CMM Lite: SEPG Tailoring Guidance for Applying the
Capability Maturity Model for Software to Small Projects," Proceedings of the 1996 Software
Engineering Process Group Conference: Wednesday Papers, Atlantic City, NJ, 20-23 May
1996.

Ahlgren96 Magnus Ahlgren, "CMM Light for SMEs," Conference Notebook: The First Annual
European Software Engineering Process Group Conference, Amsterdam, The
Netherlands, 26-27 June 1996, section C413.

Barbour96 Rick Barbour, “Software Capability Evaluation Version 3.0 Implementation Guide for
Supplier Selection,” Software Engineering Institute, Carnegie Mellon University,
CMU/SEI-95-TR-012, April 1996.

Brodman96 Judith G. Brodman and Donna L. Johnson, The LOGOS Tailored Version of the CMM for
Small Businesses, Small Organizations, and Small Projects, Version 1.0, August 1996.

Curtis96 Bill Curtis, "The Factor Structure of the CMM and Other Latent Issues," Proceedings of
the 1996 Software Engineering Process Group Conference: Tuesday Presentations,
Atlantic City, NJ, 20-23 May 1996.

Daskalantonakis94 Michael K. Daskalantonakis, "Achieving Higher SEI Levels," IEEE Software,
Vol. 11, No. 4, July 1994, pp. 17-24.

DeMarco95 Tom DeMarco, Why Does Software Cost So Much?, ISBN 0-932633-34-X, Dorset
House, New York, NY, 1995.

Dunaway96 Donna K. Dunaway and Steve M. Masters, "CMM-Based Appraisal for Internal Process
Improvement (CBA IPI): Method Description," Software Engineering Institute, Carnegie
Mellon University, CMU/SEI-96-TR-007, DTIC Number ADA307934, 1996.

Ferguson97 Pat Ferguson and Jeanie Kitson, “CMM-Based Process Improvement Supplemented by the
Personal Software Process in a Small Company Environment,” , Proceedings of the 1997
Software Engineering Process Group Conference, San Jose, CA, 17-20 March 1997.

Ginsberg95 Mark Ginsberg and Lauren Quinn, “Process Tailoring and the Software Capability
Maturity Model,” Software Engineering Institute, Carnegie Mellon University, CMU/SEI-
94-TR-024, November 1995.

Hadden98a Rita Hadden, “How Scalable are CMM Key Practices?” Crosstalk: The Journal of Defense
Software Engineering, Vol. 11, No. 4, April 1998, pp. 18-20, 23.

Hadden98b Rita Hadden, “Key Practices to the CMM: Inappropriate for Small Projects?” panel, Rita
Hadden moderator, Proceedings of the 1998 Software Engineering Process Group
Conference, Chicago, IL, 9-12 March 1998.

Hayes97 Will Hayes and James W. Over, "The Personal Software Process (PSP): An Empirical
Study of the Impact of PSP on Individual Engineers," Software Engineering Institute,
Carnegie Mellon University, CMU/SEI-97-TR-001, December 1997.

Hoffman98 Leo Hoffman, “Small Projects and the CMM,” in “Key Practices to the CMM:
Inappropriate for Small Projects?” panel, Rita Hadden moderator, Proceedings of the
1998 Software Engineering Process Group Conference, Chicago, IL, 9-12 March 1998.

Humphrey95 Watts S. Humphrey, A Discipline for Software Engineering, ISBN 0-201-54610-8,
Addison-Wesley Publishing Company, Reading, MA, 1995.

13

Johnson97 Donna L. Johnson and Judith G. Brodman, "Tailoring the CMM for Small Businesses, Small
Organizations, and Small Projects," Software Process Newsletter, IEEE Computer Society
Technical Council on Software Engineering, No. 8, Winter 1997, p. 1-6.

McConnell96 Steve McConnell, Rapid Development: Taming Wild Software Schedules , Microsoft Press,
Redmond, WA, 1996.

McFeeley96 Bob McFeeley, "IDEAL: A User's Guide for Software Process Improvement," Software
Engineering Institute, Carnegie Mellon University, CMU/SEI-96-HB-001, February 1996.

Moody95 Fred Moody, I Sing the Body Electronic, Viking, Penguin Books, New York, NY, 1995.

Paquin98 Sherry Paquin, “Struggling with the CMM: Real Life and Small Projects,” in “Key
Practices to the CMM: Inappropriate for Small Projects?” panel, Rita Hadden moderator,
Proceedings of the 1998 Software Engineering Process Group Conference, Chicago,
IL, 9-12 March 1998.

Paulk95 Carnegie Mellon University, Software Engineering Institute (Principal Contributors and
Editors: Mark C. Paulk, Charles V. Weber, Bill Curtis, and Mary Beth Chrissis), The
Capability Maturity Model: Guidelines for Improving the Software Process, ISBN 0-
201-54664-7, Addison-Wesley Publishing Company, Reading, MA, 1995.

Paulk96 Mark C. Paulk, "Effective CMM-Based Process Improvement," Proceedings of the 6th
International Conference on Software Quality, Ottawa, Canada, 28-31 October 1996,
pp. 226-237.

Pitterman98 Bill Pitterman, “Key Practices to the CMM: Inappropriate for Small Projects?” panel, Rita
Hadden moderator, Proceedings of the 1998 Software Engineering Process Group
Conference, Chicago, IL, 9-12 March 1998.

Sanders98 Marty Sanders, “Small Company Action Training and Enabling,” in The CMM and Small
Projects, Society for Software Quality Roundtable, Washington, DC, 26 January 1998.

Strigel95 Wolfgang B. Strigel, "Assessment in Small Software Companies," Proceedings of the 1995 Pacific
Northwest Software Quality Conference, 1995, pp. 45-56.

Whitney94 Roselyn Whitney, Elise Nawrocki, Will Hayes, and Jane Siegel, "Instant Profile:
Development and Trial of a Method to Measure Software Engineering Maturity Status,"
CMU/SEI-94-TR-4, Software Engineering Institute, Carnegie Mellon University, March
1994.

Williams98 Louise B. Williams, “SPI Best Practices for ‘Small’ Projects,” in The CMM and Small
Projects, Society for Software Quality Roundtable, Washington, DC, 26 January 1998.

Acknowledgements. I would like to thank the folks who reviewed this paper: Judi Brodman, Rita
Hadden, Stuart Locklear, Henry Mendenhall, Gladys Mercier, Sherry Paquin, Kathy Paulk, Pedro Pinto,
Marty Sanders, Francisco Valeriano, and Bin-Lan Woo, plus the anonymous reviewers. Any errors are
sadly mine.

1999 International Conference on Software Quality Cambridge, MA

1

Analyzing the Conceptual Relationship Between ISO/IEC
15504 (Software Process Assessment) and the Capability

Maturity Model for Software

Mark C. Paulk
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA, USA

Abstract
The Capability Maturity Model for Software (Software CMM) is probably the best known
and most widely used model world-wide for software process improvement. ISO/IEC 15504
is a suite of standards currently under development for software process assessment, which
can be expected to affect the continuing evolution of the Software CMM. This paper
discusses the similarities and differences between the two models and how they may influence
each other as they both continue to evolve.

Introduction
The Software Engineering Institute (SEI) has been evolving a process maturity framework
now known as the Capability Maturity Model for Software (Software CMM) since 1986
[Paulk95a, Paulk95c]. This model provides organizations with guidance for measuring
software process maturity and establishing process improvement programs. The Software
CMM is probably the best known and most widely used model world-wide for software
process improvement at this writing.

ISO/IEC1 15504 is a suite of standards for software process assessment currently under
development as an international standard . ISO/IEC 15504 has been published as a type 2
technical report, which is a stage in the development of a standard. Of the nine parts to
ISO/IEC 15504, the parts directly relevant to the Software CMM are ISO/IEC 15504-2, the
reference model, and ISO/IEC 15504-5, which provides an example model. As an
international standard, ISO/IEC 15504 can be expected to affect the continuing evolution of
CMM-related products.

 Capability Maturity Model and CMM are registered in the U.S. Patent and Trademark Office.
 The Software Engineering Institute is a federally funded research and development center sponsored by

the U.S. Department of Defense.
1 ISO/IEC 15504 is being developed by working group 10 (WG10) under the software engineering
subcommittee (SC7) of the information technology joint committee (JTC1) established by the
International Organization for Standardization (ISO) and the International Electrotechnical
Commission (IEC).

1999 International Conference on Software Quality Cambridge, MA

2

 This paper provides an overview of the Software CMM and ISO/IEC 15504, discusses the
similarities and differences between them, and speculates how they may influence each other
as they both continue to evolve.

The Capability Maturity Model for Software
The Capability Maturity Model for Software describes the principles and practices underlying
software process maturity and is intended to help software organizations improve the maturity
of their software processes in terms of an evolutionary path from ad hoc, chaotic processes to
mature, disciplined software processes. The Software CMM is organized into five maturity
levels, described in Table 1.

Table 1. Software CMM Maturity Levels.

Software CMM
Maturity Level

Description of Software CMM Maturity Levels

1) Initial The software process is characterized as ad hoc, and occasionally even chaotic.
Few processes are defined, and success depends on individual effort and heroics.

2) Repeatable Basic project management processes are established to track cost, schedule, and
functionality. The necessary process discipline is in place to repeat earlier
successes on projects with similar applications.

3) Defined The software process for both management and engineering activities is
documented, standardized, and integrated into a standard software process for
the organization. All projects use an approved, tailored version of the
organization's standard software process for developing and maintaining
software.

4) Managed Detailed measures of the software process and product quality are collected.
Both the software process and products are quantitatively understood and
controlled.

5) Optimizing Continuous process improvement is enabled by quantitative feedback from the
process and from piloting innovative ideas and technologies.

Except for Level 1, each maturity level is decomposed into several key process areas that
indicate the areas an organization should focus on to improve its software process. The
key process areas in Version 1.1 of the Software CMM are listed in Table 2.

For convenience, the key process areas are internally organized by common features. The
common features are attributes that indicate whether the implementation and
institutionalization of a key process area is effective, repeatable, and lasting. The five
common features are Commitment to Perform, Ability to Perform, Activities Performed,
Measurement and Analysis, and Verifying Implementation. General practices that apply to
every key process area at every maturity level are categorized by the common features. For
example, establishing policies is a common practice in Commitment to Perform and providing
training is a common practice in Ability to Perform.

Each key process area is described in terms of the key practices that contribute to satisfying its
goals and that are allocated to the common features. The key practices describe the specific
infrastructure and activities that contribute most to the effective implementation and
institutionalization of the key process area.

1999 International Conference on Software Quality Cambridge, MA

3

Table 2. The Key Process Areas in the Software CMM.

Level Focus Key Process Areas
5

Optimizing
Continuous process
improvement

Defect Prevention
Technology Change Management
Process Change Management

4
Managed

Product and process
quality

Quantitative Process Management
Software Quality Management

3
Defined

Engineering processes
and organizational
support

Organization Process Focus
Organization Process Definition
Training Program
Integrated Software Management
Software Product Engineering
Intergroup Coordination
Peer Reviews

2
Repeatable

Project management
processes

Requirements Management
Software Project Planning
Software Project Tracking & Oversight
Software Subcontract Management
Software Quality Assurance
Software Configuration Management

1
Initial

Competent people and heroics

ISO/IEC 15504 -- Software Process Assessment

ISO/IEC 15504 is intended to harmonize the many different approaches to software process
assessment. It has nine parts:

Part 1 : Concepts and introductory guide
Part 2 : A reference model for processes and process capability
Part 3 : Performing an assessment
Part 4 : Guide to performing assessments
Part 5 : An assessment model and indicator guidance
Part 6 : Guide to competency of assessors
Part 7 : Guide for use in process improvement
Part 8 : Guide for use in determining supplier process capability
Part 9 : Vocabulary

The reference model in Part 2 documents the set of universal software engineering
processes that are fundamental to good software engineering and that cover best practice
activities. It describes processes that an organization may perform to acquire, supply,
develop, operate, evolve and support software and the process attributes that characterize
the capability of those processes. The purpose of the reference model is to provide a
common basis for different models and methods for software process assessment, ensuring
that results of assessments can be reported in a common context.

1999 International Conference on Software Quality Cambridge, MA

4

The reference model architecture is two dimensional. The process dimension is
characterized by process purpose statements, which are the essential measurable objectives
of a process. The processes are listed in Table 4.

The process capability dimension is characterized by a series of process attributes,
applicable to any process, which represent measurable characteristics necessary to manage
a process and improve its capability to perform. Each process attribute describes an aspect
of the overall capability of managing and improving the effectiveness of a process in
achieving its purpose and contributing to the business goals of the organization. There are
nine process attributes, which are grouped into capability levels, one at capability level 1
and two each at levels 2-5. Capability levels constitute a rational way of progressing
through improvement of the capability of any process. The underlying principles are the
same conceptually as the Software CMM maturity levels, although targeted to the process
rather than the organization. The six capability levels are described in Table 3.

Table 3. The Capability Levels in ISO/IEC 15504-2.

Capability Level ISO/IEC 15504-2 Capability Level Description
Level 0

Incomplete
There is general failure to attain the purpose of the process. There are little
or no easily identifiable work products or outputs of the process.

Level 1
Performed

The purpose of the process is generally achieved. The achievement may not
be rigorously planned and tracked. There are identifiable work products for
the process, and these testify to the achievement of the purpose.

Level 2
Managed

The process delivers work products according to specified procedures and is
planned and tracked. Work products conform to specified standards and
requirements.

Level 3
Established

The process is performed and managed using a defined process based upon
good software engineering principles. Individual implementations of the
process use approved, tailored versions of standard, documented processes to
achieve the process outcomes.

Level 4
Predictable

The defined process is performed consistently in practice within defined
control limits, to achieve its defined process goals.

Level 5
Optimizing

Performance of the process is optimized to meet current and future business
needs, and the process achieves repeatability in meeting its defined business
goals.

The process attributes are defined in ISO/IEC 15504-2 and elaborated in ISO/IEC 15504-5
by process indicators, called generic practices in earlier drafts of the evolving standard.

Relating ISO/IEC 15504 Processes to CMM Key Process Areas
The mapping in Table 4 shows how the topics in ISO/IEC 15504 relate to the equivalent
topics in the Software CMM. Topics are typically not isomorphic but are highly
correlated. Anyone adequately implementing, for example, the Configuration
Management Process in ISO/IEC 15504 could reasonably expect to have satisfied the
Software Configuration Management key process area in the Software CMM. Topics are
not usually isomorphic because of extensions that may have been added or different levels
of abstraction that may have been chosen (e.g., the Development Process in ISO/IEC

1999 International Conference on Software Quality Cambridge, MA

5

12207 addresses the same set of concerns as the Software Product Engineering key
process area in the Software CMM). "Subprocesses" and activities in Table 4 are in italics
to emphasize that they are components of a larger construct. Where the relationship is
indirect, the Software CMM component is in parentheses to highlight the difference in
scope.

Table 4. Mapping Between ISO/IEC 15504-2 Processes and Software CMM Key
Process Areas.

ISO/IEC 15504 Processes Software CMM v1.1

CUS.1 Acquisition Software Subcontract Management
CUS.1.1 Acquisition preparation Software Subcontract Management, Activity 1

CUS.1.2 Supplier selection Software Subcontract Management, Activity 2

CUS.1.3 Supplier monitoring Software Subcontract Management, Activities 5
and 7-11

CUS.1.4 Customer acceptance Software Subcontract Management, Activity 12

CUS.2 Supply2 (Software Project Planning; Software Project
Tracking & Oversight; Software Product
Engineering)

CUS.3 Requirements elicitation

CUS.4 Operation
CUS.4.1 Operational use

CUS.4.2 Customer support

ENG.1 Development Software Product Engineering

ENG.1.1 System3 requirements
analysis and design

ENG.1.2 Software requirements
analysis

Software Product Engineering, Activity 2

ENG.1.3 Software design Software Product Engineering, Activity 3

ENG.1.4 Software construction Software Product Engineering, Activity 4

ENG.1.5 Software integration Software Product Engineering, Activity 6

2 The Supply Process deals with providing software to the customer that meets the agreed requirements.
Establishing a contract, developing the software, and delivering it to the customer, which are the issues
for this process, are addressed in various key process areas, although the Supply Process itself is not
explicitly specified in the Software CMM.
3 Systems engineering issues, e.g., requirements elicitation, system analysis, and system testing, were not
considered within the scope of the Software CMM in version 1.1.

1999 International Conference on Software Quality Cambridge, MA

6

ISO/IEC 15504 Processes Software CMM v1.1

ENG.1.6 Software testing Software Product Engineering, Activity 7

ENG.1.7 System integration and
testing

(Software Product Engineering, Activities 6 and 7)

ENG.2 System and software
maintenance

SUP.1 Documentation Software Product Engineering, Activity 8

SUP.2 Configuration management Software Configuration Management

SUP.3 Quality assurance Software Quality Assurance

SUP.4 Verification (Peer Reviews; Software Product Engineering,
Activities 5 and 6)

SUP.5 Validation Software Product Engineering, Activity 5

SUP.6 Joint review Software Project Tracking & Oversight, Activity
13

SUP.7 Audit (Software Quality Assurance)4

SUP.8 Problem resolution Software Configuration Management, Activity 5

MAN.1 Management5 (Software Project Planning; Software Project
Tracking & Oversight; Integrated Software
Management)

MAN.2 Project management Software Project Planning; Software Project
Tracking & Oversight; Integrated Software
Management

MAN.3 Quality management Software Quality Management

MAN.4 Risk management Software Project Planning, Activity 13; Software
Project Tracking & Oversight, Activity 10;
Integrated Software Management, Activity 10

ORG.1 Organizational alignment6

ORG.4 Infrastructure Organization Process Definition

4 SQA covers both quality assurance and audits. Audits are an independent QA function. The SQA key
process area can be implemented as an independent function or not; the requirement is objective
verification rather than independent verification. SQA may, or may not, therefore cover the Audit Process
in a particular environment.
5 This is a generic planning and management process that is to be applied to any process, rather than
project planning specifically.
6 The purpose of the Organizational Alignment Process is to ensure that individuals share a common
vision, culture, and understanding of business goals.

1999 International Conference on Software Quality Cambridge, MA

7

ISO/IEC 15504 Processes Software CMM v1.1

ORG.2 Improvement Organization Process Definition
ORG.2.1 Process establishment Organization Process Definition

ORG.2.2 Process assessment Organization Process Focus, Activity 1

ORG.2.3 Process improvement Organization Process Focus; (Process Change
Management)

ORG.3 Human resource
management

Training Program

ORG.4 Infrastructure

ORG.5 Measurement Measurement and Analysis (common feature)

ORG.6 Reuse

Requirements Management

Intergroup Coordination

Peer Reviews7

Quantitative Process Management8

Defect Prevention

Technology Change Management

Process Change Management

Relating the Process Capability Dimension to Maturity Levels
The Software CMM is sometimes characterized as a staged model because it describes
organizational capability in terms of maturity levels that represent evolutionary stages of
capability, and the ISO/IEC 15504 model is sometimes, perhaps less accurately, described
as a continuous model. The ISO/IEC 15504 model describes the terrain of software
process maturity from the perspective of the individual process, where the Software CMM
provides a roadmap for organizational improvement.

A staged model can be described as:
• an organization-focused model, since its target is the organization’s process capability,
• a descriptive model, because it describes organizations at different levels of achieved

capability,
• a prescriptive or normative model, since it prescribes how an organization should

improve its processes.

7 Indirectly covered by SUP.4 Verification process.
8 Indirectly covered by ORG.5 Measurement process.

1999 International Conference on Software Quality Cambridge, MA

8

A staged architecture focuses on software process improvement and, in the case of the
Software CMM, provides 500 pages of mostly informative material on software processes
that has been prioritized by being in key process areas. The rating components, i.e., the
key process areas and goals, are a comparatively small part of the document; there are 18
key process areas and 52 goals.

The term continuous is not a strictly accurate description since the ISO/IEC 15504
architecture is also based on (capability) levels. Other descriptive terms that could be used
include:
• a process-focused model, since its target is process capability,
• a terrain model, from the analogy to a description of the software process terrain, and
• a reference model, since its primary use is in assessment as the reference for rating

processes.

One of the objectives of ISO/IEC 15504 is to create a way of measuring process capability,
while avoiding a specific approach to improvement such as the SEI’s maturity levels, so that
the many different kinds of assessment, model, and their results, can be meaningfully
compared to one another. The approach selected is to measure the implementation and
institutionalization of specific processes; a process measure rather than an organization
measure. Maturity levels can be viewed as sets of process profiles using this approach
[Paulk94, Paulk95a, Paulk96]. This addresses one of the deficiencies in the staged approach:
lower maturity key process areas evolve with the organization's maturity. For example, there
are organizational standards and required training for Software Configuration Management in
a maturity level 3 organization, even though this is not explicitly stated in the Software CMM.

Differences Between ISO/IEC 15504 and the Software CMM
Both the staged and continuous perspectives have value, and they are conceptually
compatible, but there is a fundamental philosophical difference between the two
architectures. This philosophical difference implies strengths and weaknesses for both
architectures.

Characteristic Staged Architecture
(Software CMM)

Continuous Architecture
(ISO/IEC 15504)

Vital few Attention is focused on the
"vital few" issues in process
improvement that are
generally true for any
organization.

Less important process issues
can drown out the “vital few”
issues when there are clashes
over improvement priorities.

Organization
capability

 Organizational capability is
explicitly described in terms
of maturity levels.

Organizational capability is
implicit; it can be intuitively
understood by looking at the
organizational processes, the
process attributes, and their
dependencies.

Process evolution Key process areas are a The evolution of processes

1999 International Conference on Software Quality Cambridge, MA

9

Characteristic Staged Architecture
(Software CMM)

Continuous Architecture
(ISO/IEC 15504)

snapshot of the evolving
process.

from ad hoc to continuously
improving is "fully"
described.

Guidance Extensive guidance in the key
practices and subpractices
provides significant help in
understanding what a key
practice or goal means,
although it is typically
oriented towards the
practices of large
organizations and projects in
a contracting environment.

Abstract processes and
process attributes can be
difficult to interpret. No
particular organizational
improvement path is
prescribed.

Extendibility It may be difficult for the
non-expert to extend the
CMM principles to new
disciplines or focus areas.

Adding processes and
integrating with other models
is a relatively straightforward
definition, with the
application of the capability
dimension for rating the
processes.

Some processes are “invisible” in a staged model, until the point that focusing on their
improvement becomes critical to organizational maturity. Engineering processes, for example,
are not a focus of maturity level 2, so they “suddenly appear” at level 3. Level 1 organizations
perform engineering processes, but they are not represented in the Software CMM until level
3. This is intrinsic to the way the maturity levels are defined: the critical problems for level 1
organizations are managerial, not technical, so the improvement focus is not on the
engineering processes at level 2.

This focus on the "vital few" processes at each maturity level for building organizational
capability becomes a challenge when layering a staged model on top of a continuous
architecture. For example, should every process described in the continuous model be placed
under quantitative or statistical control if the organization is to be characterized as level 4 or
higher? The staged model lets the decision of what processes should be quantitatively or
statistically controlled be driven by business objectives. No rule, other than "all processes,"
has been articulated yet for aggregating process capability levels to achieve an organizational
maturity level when using a continuous model. Should all processes be standardized? Under
statistical control? Optimal?

This is both a strength and a weakness of the layering approach to integrating staged and
continuous models. It highlights standardizing and tailoring (capability level 3) as issues for
level 2 key process areas in a maturity level 3 organization, but flexibility in applying these
principles to all (versus critical) processes is desirable from a business objective perspective.
Conversely, the improvement priorities in the staged model describe an "80% solution" to

1999 International Conference on Software Quality Cambridge, MA

10

effective process improvement; organizations have unique improvement needs driven by their
business needs and environment.

Key process areas are not processes. A process changes over time and hopefully matures.
A process is dynamic. A key process area is a static description of essential attributes
(i.e., key practices) of a process when that process is fully realized, and it does not tell
how the process is performed.

Usability was an issue in early drafts of ISO/IEC 15504 when 26 generic practices were
rated on the capability dimension rather than nine process attributes. This lead to over
1,000 rating decisions during an assessment, and early trials indicated that assessments
could be quite lengthy [Woodman96]. The solution to this problem was to "raise the level
of abstraction" in rating to process attributes.

The Systems Engineering CMM [Bate95] uses the 26 generic practices in its instantiation
of the continuous architecture (with a different rating philosophy). EIA Interim Standard
731 ("Systems Engineering Capability, Part 1: Model") defines 12 generic practices in its
variation of a continuous architecture.

For Software CMM v2, we proposed addressing this concern via a goal for each key
process area to capture the institutionalization of the process. The institutionalization goal
would have captured the topics addressed by ISO/IEC 15504 process attributes via key
practice templates for planning, training, tailoring, etc., as appropriate for the maturity
level. Practices in the institutionalization common features – Commitment to Perform,
Ability to Perform, Measurement and Analysis, and Verifying Implementation – would
have mapped to this goal. This would have clarified that institutionalization is a critical
part of satisfying a key process area and separated institutionalization and implementation
for purposes of rating key process areas.

The difference in focus – organization versus process – thus leads to some subtle
challenges in integrating the staged and continuous architectures. The similarities between
capability and maturity levels make the relationships conceptually straightforward; the
philosophical difference makes the operational details tricky.

Conclusions
The SEI is continuing to evolve the CMM concepts, primarily in its current work on
CMM integration, which addresses software, systems engineering, and integrated process
and product development. ISO/IEC JTC1/SC7/WG10 is continuing to refine ISO/IEC
15504 and is currently targeting 2001 for release of the international standard.

One of the challenges in harmonizing the CMM and ISO/IEC 15504 is defining the rating
components for the process capability dimension. Mapping between one "goal" per level
and two "process attributes" per level may lead to unacceptable granularity problems. The
other major challenge is developing an acceptable operational mapping between
organizational and process capability. Both SEI and WG10 continue to discuss these and
other issues.

1999 International Conference on Software Quality Cambridge, MA

11

References
Bate95 Roger Bate, Dorothy Kuhn, Curt Wells, et al, "A Systems Engineering

Capability Maturity Model, Version 1.1," Software Engineering Institute,
Carnegie Mellon University, CMU/SEI-95-MM-003, November 1995.

Paulk94 Mark C. Paulk and Michael D. Konrad, "Measuring Process Capability
Versus Organizational Process Maturity," Proceedings of the 4th
International Conference on Software Quality, ASQC, Washington,
DC, 3-5 October 1994.

Paulk95a Mark C. Paulk, Michael D. Konrad, and Suzanne M. Garcia, “CMM
Versus SPICE Architectures,” IEEE Computer Society Technical Council
on Software Engineering, Software Process Newsletter, No. 3, Spring
1995, pp. 7-11.

Paulk95b Carnegie Mellon University, Software Engineering Institute (Principal
Contributors and Editors: Mark C. Paulk, Charles V. Weber, Bill Curtis,
and Mary Beth Chrissis), The Capability Maturity Model: Guidelines
for Improving the Software Process, Addison-Wesley Publishing
Company, Reading, MA, 1995.

Paulk95c Mark C. Paulk, “The Evolution of the SEI’s Capability Maturity Model for
Software,” Software Process: Improvement and Practice, Vol. 1, Pilot
Issue, Spring 1995, pp. 3-15.

Paulk96 Mark C. Paulk, "Process Improvement and Organizational Capability:
Generalizing the CMM," Proceedings of the ASQC's 50th Annual
Quality Congress and Exposition, Chicago, IL, 13-15 May 1996, pp. 92-
97.

Woodman96 Ian Woodman and Robin Hunter, "Analysis of Assessment Data from
Phase One of the SPICE Trials," Software Process Newsletter, IEEE
Computer Society Technical Council on Software Engineering, No. 6,
Spring 1996, pp. 5-9.

17 Oct 2000 1 10ICSQ

APPLYING SPC TO THE PERSONAL SOFTWARE PROCESS

Mark C. Paulk
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA, USA

ABSTRACT

In recent years, a growing number of software organizations have begun
to focus on applying the concepts of statistical process control (SPC) to
the software process, usually as part of an improvement program based
on the Software CMM. There are a number of technical challenges to
the successful use of these statistical techniques, primarily centered on
the issues associated with high variation between individual software
professionals. A growing number of organizations, however, are
demonstrating that SPC techniques can be applied to the software
process, even if questions remain on the specific processes, measures,
and statistical techniques that will provide significant business value. This
paper illustrates the application of the XmR control chart to the Personal
Software Process. SM

Introduction

During the last decade, the focus of software process improvement has been on
fundamental project management and organizational learning issues. In recent years,
more mature organizations have begun to focus on applying the concepts of statistical
process control (SPC) to the software process, specifically control charts, along with
other statistical and process modeling techniques. There are a number of technical
challenges to the successful use of these statistical techniques, primarily centered on
the issues associated with high variation between individual software professionals.
Studies of the differences between software professionals have ranged from 10:1 up to
100:1, with 20:1 differences being fairly common (Curtis, 1990; DeMarco, 1999). For
this and other reasons, some software professionals have questioned the validity and
business value of SPC in the software arena (Ould, 1996; Carleton, 1999; Kan, 1995).

 Capability Maturity Model and CMM are registered with the U.S. Patent and Trademark Office.
SM Personal Software Process and PSP are service marks of Carnegie Mellon University.
 The Software Engineering Institute is a federally funded research and development center
sponsored by the U.S. Department of Defense.

2 ASQ Software Division 10th ICSQ

A growing number of organizations, however, are demonstrating that SPC
techniques can be applied to the software process, even if questions remain on the
specific processes, measures, and statistical techniques that will provide significant
business value (Florac, 1999; Paulk, 2000; Florac, 2000; Weller, 2000).

The term software process refers not just to an organization’s overall software
process, but to any process or subprocess used by a software project or organization.
The Software CMM suggests it is at the subprocess level of activities and tasks that true
quantitative management of the process occurs. At the macro level that management
focuses on, the emphasis is more on risk management in an uncertain world than
process control in a statistical sense, where software professionals focus on the day-to-
day work. Thus, the concept of software process can be viewed as applying to any
identifiable activity that is undertaken to produce or support a software product or
service. This includes planning, estimating, designing, coding, testing, inspecting,
reviewing, measuring, and controlling, as well as the subtasks and activities that
comprise these undertakings.

The purpose of this paper is to apply a specific SPC technique, the XmR chart, to
data from the Personal Software Process SM (PSPSM). This is intended to illustrate the
use of the XmR chart and to test the stability and predictability of the PSP processes.

The Personal Software Process

PSP is taught as a one-semester university course or a multi-week industry
training course. It typically involves the development of ten programs, using increasingly
sophisticated processes. PSP is a measurement-driven approach, where the student’s
own data drives the learning process as incrementally more powerful processes are
adopted. SPC is not taught as part of PSP or TSP; the primary statistical technique
used is prediction intervals for estimating size, effort, and defects.

There are seven process levels used to introduce the PSP; each level builds on
the prior level by adding a few process steps to it. This minimizes the impact of process
change on the engineer, who needs only to adapt the new techniques into an existing
baseline of practices.

The processes are used on the last four PSP programming assignments and can
be considered both rigorous and mature software processes. In an earlier analysis of
the PSP data (Hayes, 1997), the data was separated for analysis into three "bands" for
PSP0, PSP1, and PSP2. In this analysis, we will focus on the last three PSP processes:
PSP2, PSP2.1, and PSP3. Design review and code review are introduced at PSP2 to
help engineers achieve 100% yield: all defects removed before compiling the program.
These are personal reviews conducted by an engineer on his or her own design or code.
They are structured, data-driven review processes that are guided by personal review
checklists derived from the engineer’s historical defect data.

There are three basic measures in the PSP: development time, defects, and size.
All other PSP measures are derived from these three basic measures. Minutes are the
unit of measure for development time. A defect is defined as any change that must be
made to the design or code in order to get the program to compile or test correctly.

10th ICSQ ASQ Software Division 3

Lines of code were chosen as the size measure for PSP because they can be
automatically counted, precisely defined, and are well correlated with development
effort. Size is also used to normalize other data, such as productivity (LOC per hour) and
defect density (defects per KLOC). Each PSP program involves some amount of new
development, enhancement, and/or reuse. The total LOC in a program will have several
different sources, including some new LOC, some existing LOC that may have been
modified, and some reused LOC. Developing new or modified LOC represents most of
the programming effort in the PSP course; consequently, new and changed LOC is the
basis for most size measurement in the PSP.

Statistical Process Control

What is statistical process control? What is implied by SPC? Operationally,
statistical process control implies the use of seven basic tools (Ishikawa, 1986):

§ flow charts

§ scatter diagrams

§ histograms

§ Pareto analysis

§ cause-and-effect (fishbone) diagrams

§ run (trend) charts

§ control charts

While many other techniques are associated with SPC, SPC always implies the
use of control charts. A control chart is a run chart with limits added that indicate the
normal execution of the process. The control limits are normally based on 3-sigma
boundaries for the underlying common cause system that the process represents.
Control charts provide a statistical method for distinguishing between variation caused
by normal process operation and variation caused by anomalies in the process.

The basis for control charts is recognition of two types of variation – common
cause variation and assignable cause variation. Common cause variation is variation in
process performance due to normal or inherent interaction among the process
components (people, machines, material, environment, and methods). Common cause
variation of process performance is characterized by a stable and consistent pattern
over time. Variation in process performance due to common cause is thus random, but
will vary within predictable bounds. When a process is stable, the random variations that
we see all come from a constant system of chance causes. The variation in process
performance is predictable, and unexpected results are extremely rare.

Predictable is synonymous with "in control" or "stable." The other type of variation
in process performance is due to assignable causes, also known as special causes.
Assignable cause variation has marked impacts on product characteristics and other
measures of process performance. These impacts create significant changes in the
patterns of variation. Assignable cause variations arise from events that are not part of

4 ASQ Software Division 10th ICSQ

the normal process. They represent sudden or persistent abnormal changes to one or
more of the process components. These changes can be in things such as inputs to the
process, the environment, the process steps themselves, or the way in which the
process steps are executed.

When all assignable causes have been removed and prevented from recurring in
the future so that only a single, constant system of chance causes remains, we have a
stable and predictable process.

The simplest rule for detecting a signal (a possible assignable cause) is when a
point falls outside the 3-sigma control limits. Many other sets of detection rules have
been proposed, which both make the control chart more sensitive to signals and also
leads to a greater number of false alarms. The decision on which detection rules to use
should be based on the economic trade-off between sensitivity and unnecessary work.
Four common detection rules (Wheeler, 1992) are:

Detection
Rule One

A lack of control is indicated whenever a single point falls outside the
(three-sigma) control limits.

Detection
Rule Two

A lack of control is indicated whenever at least two out of three
successive values fall on the same side of, and more than two sigma
units away from, the central line.

Detection
Rule Three

A lack of control is indicated whenever at least four out of five successive
values fall on the same side of, and more than one sigma unit away from,
the central line.

Detection
Rule Four

A lack of control is indicated whenever at least eight successive values
fall on the same side of the central line.

When a process is stable, or nearly so, the 3-sigma limits determine the amount
of variation that is normal or natural to the process. This is the "voice of the process" or
the process telling us what it is capable of doing. This may or may not be satisfactory to
the customer. If the performance is satisfactory, the process is "capable;" if the
performance is not satisfactory, then the process must be changed since the variation is
intrinsic to the process.

Many control charts use homogeneous, or rational, subgroups when measuring.
We try to group the data so that assignable causes are more likely to occur between
subgroups than within them -- thus "homogeneous" or "common cause" are useful
adjectives. Control limits become wider and control charts less sensitive to assignable
causes when containing non-homogeneous data. For many software processes,
however, it will be more desirable to plot individual data points rather than the averages
of subgroups. The most commonly used chart for individual data is the XmR chart,
although other charts that take advantage of knowledge about the statistical distribution
of the data can also be used when appropriate. Examples include the u-chart for
Poisson data and the p-chart for binomial data.

10th ICSQ ASQ Software Division 5

For XmR charts, the upper and lower control limits (or natural process limits) are
calculated by

UNPLX = Xbar + 2.66 (mRbar)

UNPLX = Xbar - 2.66 (mRbar)

UCLR = 3.268 (mRbar)

where the "subscript bar" denotes the average of the individual X values and the
moving ranges. The lower control limit for the moving range chart is always zero.

Challenges in Using Control Charts

When analyzing process performance data, it is crucial to identify all sources of
variation in the process. If a conscious effort is not made to account for the potential
sources of variation, variation may be inadvertently hidden or obscured that will help
improve the process. Overly aggregated data come about in many ways, but the most
common causes are

§ poorly formulated operational definitions of product and process measures

§ inadequate description and recording of context information

§ working with data whose elements are combinations (mixtures) of values
from non homogeneous sources or different cause systems

When measured values of continuous variables have insufficient granularity (i.e.,
are coarse and imprecise), the discreteness that results can mask the underlying
process variation. Computations for X bar and σ can then be affected, and individual
values that are rounded or truncated in the direction of the nearest control limit can
easily give false out-of-control signals.

"Chunky data" can result in points that fall outside the limits even when the
underlying process is predictable (Wheeler, 1998). Excessive round-off is one way to
create chunky data. Using measurement units that are too large is another way. If the
number of possible range values, including zero, within the limits is three or less, then
you have chunky data. When rates based on counts are placed on an XmR chart, the
average count must be greater than 1.0 for the moving ranges to yield appropriate limits.

Because of the non-repetitive nature of software products and processes, some
believe it is difficult to achieve homogeneity with software data. When more than two
data values are placed in a subgroup, a judgment is being made that these values are
measurements taken under essentially the same conditions and that any difference
between them is due to natural or common variation. The primary purpose of
homogeneity is to limit the amount of variability within the subgroup data. When unlike
things are grouped together, the subgroups are said to be stratified. One way of
addressing the homogeneity concern is by having subgroups of size one using the XmR
chart.

6 ASQ Software Division 10th ICSQ

Perhaps the greatest challenge to the use of control charts for controlling
software processes is that different work products are produced by different members of
the project team. The result is software process data that is typically aggregated across
many individuals. The equivalent situation in a manufacturing environment, of placing
data from different machines on the same control chart, would not be acceptable since
this leads to mixing and stratification. This also leads to problems in preserving time
sequence in the data, although this is arguably a minor issue in conjuction with
combining data from multiple team members. Collecting data on an individual basis
would address this, but could have severe consequences if there were any chance of
motivational use of the data, e.g., during performance appraisals, which would lead to
dysfunctional behavior if the measurement system is not comprehensive (Austin, 1996).
Collecting data at the individual level would also significantly decrease the amount of the
data available for any specific statistical analysis. Disaggregating process data by
individual, by defect type, or by other categories may be critical to obtaining insight into
separate common cause systems (Florac, 2000), and this may imply severe practical
limits to the value of SPC for software processes.

On the other hand, it is not unrealistic to think that that processes and systems
are subject to hundreds of cause-and-effect relationships (Wheeler, 1998). When every
process is subject to many different cause-and-effect relationships, predictable
processes are those where the net effect of the multiple causes is a sort of statics
equilibrium, which can be characterized as the common cause system. Pyzdek
comments that even companies producing one-of-a-kind products usually do so with the
same equipment, employees, and facilities, and the key to controlling the quality of
single parts is to concentrate on process elements rather than on products features, i.e.,
the repeatable (if not repetitive) process (Pyzdek, 1993). Group thinking has been
characterized as being usually better, less variable, and more precise than individual
thinking in statistical terms (Hare, 1995). How much of a problem these disaggregation
issues will be in practice remains an area for empirical research.

"Informally Stabilizing" the Software Process

When looking at their process data, organizations typically discover that the
defined processes used by the projects are not as consistently implemented or
measured as believed (Paulk, 1999). When a process is being placed under statistical
process control in a rigorous sense, it is "stabilized" by removing assignable causes of
variation. "Informal stabilization" occurs simply by examining the data (graphically)
before placing it on a control chart, as patterns in the data suggestive of mixing and
stratification are observed.

Informally stabilizing the process can be characterized as an exercise in
exploratory data analysis, which is a precursor to true quantitative management or
statistical process control. Shewhart expressed this initial stage of investigation as the
point where control had not yet been attained and there was as yet no statistical
universe to examine (Shewhart, 1939). The software processes that are first stabilized
tend to be design, code, and test, since there is usually an adequate amount of
inspection and test data to apply statistical techniques in a fairly straightforward manner.

This can be expressed as refining the operational definitions of both the
measures and the processes to be repeatable. One of the first concerns about process
performance is compliance: is the process being executed properly, are the personnel

10th ICSQ ASQ Software Division 7

trained, right tools available, etc. If the process is not in compliance, there is little chance
of performing consistently or satisfactorily. "Measurement error" is a significant concern,
frequently resulting from problems in building good operational definitions.

If a process is compliant, the next question is whether the process performance
is reasonably consistent over time. Are the effort, cost, elapsed time, delivery, and
quality consumed and produced by executing the process consistent? Realizing that
variation exists in all processes, is the variation in process performance predictable?

The use of measurement data for evaluating the performance of employees is an
ongoing concern for high maturity organizations. Deming was a strong advocate of
statistical techniques and strongly averse to performance evaluations (Deming, 1986),
declaring performance measurement "the most powerful inhibitor to quality and
productivity in the Western world." This is arguably the most controversial of Deming's
points. Austin has shown that the potential for dysfunction arises when any critical
dimension of effort expenditure is not measured, and unless the latitude to subvert
measures can be eliminated, i.e, measures can be made perfect, or a means
established for preventing the motivational use of data, dysfunction is destined to
accompany organizational measurement (Austin, 1996).

Empirical data indicates that high maturity organizations know what business
they are in; establishing product lines is one important mechanism for capturing that
vision (Besselman, 1995; Paulk, 2000). Product lines also offer a way to stratify the data
that supports the ability to compare process and product measures meaningfully.
Although there are other confounding factors, the differences between application
domain clearly cause significant performance variation. Product lines, therefore, can be
used to minimize the variability of the process data, that is, removing inappropriate
aggregation. Other issues, such as complexity and size, will also be dealt with by the
organization. The successful use of control charts that add insight and value is
predicated on identifying comparable data.

There is a tension between having stable process and continual process
improvement. High maturity organizations use "quantitative management" of their
processes, but they are continually improving those processes. The process data for the
previous process may not be valid for the new process, and new control limits may need
to be recalculated on an ongoing basis. Even when most changes are incremental,
compounded small changes can lead to dramatic improvements. Wheeler observes that
continual improvement is a journey consisting of frequent, intermittent improvements,
interspersed with alternating periods of predictable and unpredictable performance
(Wheeler, 1998).

Using XmR Charts on PSP Data

Control charts can be a useful tool in the later stages of "informally stabilizing"
the software process. For process consistency, for example, it is important that the
inspection process be a stable one, therefore placing review rates on a control chart can
identify atypical inspections. A similar step could be taken for the production process,
but the data used in this analysis is the same data set as used in the 1997 analysis
(Hayes, 1997), and the information on reused LOC was not saved for that data set.
Since the amount of reuse is an important attribute of the production process, we will
focus on the inspection process in this analysis.

8 ASQ Software Division 10th ICSQ

 Two other confounding facts were considered: the programming language used
and the experience of the programmer. Of the 298 students whose data is contained in
the 1997 PSP data set, 71 usable sets of data for assignments programmed in C were
identified, and that is the data set analyzed in this paper. Since experience does not
seem to be a major factor for performance in the context of these small programming
assignments (Hayes, 1997), experience of the programmer is not addressed in this
analysis. This would not be recommended in general.

In the interests of brevity, only code inspections for program 7A are reported in
this paper. Data were normalized by defect density rate times the median program size.
XmR charts were calculated for code review rate and typical defect density; Table 1
summarizes the data.

Table 1. Summary of the PSP Data.

Program 7A Review Rate

(LOC/min)

Program 7A Defect
Density

(defects/median program)

n 37 62

Xbar 7.47 3.19

mRbar 4.38 2.55

UNLPX 19.12 9.98

LNPLX 0 0

UCLR 14.31 8.34

It should be noted that program 7A is when code and design reviews are first
introduced in PSP, and it is apparent in the data that some students either did not
perform the reviews or did not record the code review data. For program 7A, seven
signals were iteratively identified in the code review rates for points 19, 23, 25, 43, 63,
69, and 88. Since these points suggest that an unstable inspection process was used,
these points were discarded for the review rate data in Table 1 and the defect density
analysis. Two signals were identified for the typical defect density at points 40 and 41.
Graphically, this is captured in Figure 1. The X and mR charts for the defect density use
all the data points, but the limits are calculated after the signals are removed. What the
signal may indicate is unknown; it is generally recommended that a causal analysis be
performed before deciding that a signal corresponds to an assignable cause, but that is
impractical in this case.

10th ICSQ ASQ Software Division 9

Figure 1. XmR Charts for PSP Program 7A Defect Density - Full Data Set.

Note that some points were identified as assignable causes based on the code
review rate charts, which are not shown, but the defect density XmR chart illustrates
both the use of the control chart and the fact that even in a PSP process there may be

10 ASQ Software Division 10th ICSQ

"signals" of extraordinary events -- especially when adopting a new technique, such as
code reviews.

Conclusions

It may be unreasonable to expect that every major software process should be
managed using control charts. There are other rigorous statistical techniques, such as
confidence intervals and prediction intervals that could be superior in some situations. In
some instances rigorous statistical techniques may not be economically justifiable. It is
reasonable to expect, however, that SPC techniques will be in the tool kit of high
maturity software organizations and used where they provide value.

The analysis reported here is only a brief introduction to the ongoing analyses of
the PSP data that we hope to perform. The PSP and Team Software Process SM data
provides insight into the potential performance of a disciplined process. Later analyses
will examine the impact of experience, differing programming languages, and stability
and predictability across assignments.

References

Robert D. Austin, Measuring and Managing Performance in Organizations, Dorset
House Publishing, New York, NY, 1996.

Joe Besselman and Stan Rifkin, "Exploiting the Synergism Between Product Line Focus
and Software Maturity," Proceedings of the 1995 Acquisition Research
Symposium, Washington, D.C., pp. 95-107.

Anita D. Carleton, Mark C. Paulk, et al, “Panel Discussion: Can Statistical Process
Control Be Usefully Applied to Software?” The 11th Software Engineering
Process Group (SEPG) Conference, Atlanta, Georgia, 8-11 March 1999 and
European SEGP 99, 7-10 June 1999, Amsterdam, Netherlands. See
http://www.sei.cmu.edu/cmm/slides/slides.html#spc-panel.

Bill Curtis, "Managing the Real Leverage in Software Productivity and Quality," American
Programmer, Vol. 3, No. 7, July/August 1990, pp. 4-14.

Tom DeMarco and Timothy Lister, Peopleware, 2nd Edition, Dorset House, New York,
NY, 1999.

W. Edwards Deming, Out of the Crisis, MIT Center for Advanced Engineering Study,
Cambridge, MA, 1986.

William A. Florac and Anita D. Carleton, Measuring the Software Process: Statistical
Process Control for Software Process Improvement, Addison-Wesley,
Reading, MA, 1999.

William A. Florac, Anita D. Carleton, and Julie Barnard, "Statistical Process Control:
Analyzing a Space Shuttle Onboard Software Process," IEEE Software, Vol. 17,
No. 4, July/August 2000, pp. 97-106.

10th ICSQ ASQ Software Division 11

Lynne B. Hare, Roger W. Hoerl, John D. Hromi, and Ronald D. Snee, "The Role of
Statistical Thinking in Management," ASQC Quality Progress, Vol. 28, No. 2,
February 1995, pp. 53-60.

Will Hayes and James W. Over, "The Personal Software Process (PSP): An Empirical
Study of the Impact of PSP on Individual Engineers," Software Engineering
Institute, Carnegie Mellon University, CMU/SEI-97-TR-001, December 1997.

K. Ishikawa, Guide to Quality Control, Asian Productivity Organization, Tokyo, Japan,
(available from Unipub - Kraus International Publications, White Plains, NY)
1986.

Stephen H. Kan, Metrics and Models in Software Quality Engineering, Addison-
Wesley, Reading, MA, February 1995.

M.A. Ould, "CMM and ISO 9001," Software Process: Improvement and Practice, Vol. 2,
Issue 4, December 1996, pp.281-289.

Mark C. Paulk, "Toward Quantitative Process Management With Exploratory Data
Analysis," Proceedings of the Ninth International Conference on Software
Quality, Cambridge, MA, 4-6 Oct 1999, pp. 35-42.

Mark C. Paulk, Dennis Goldenson, and David M. White, "The 1999 Survey of High
Maturity Organizations," Software Engineering Institute, Carnegie Mellon
University, CMU/SEI-2000-SR-002, February 2000.

Thomas Pyzdek, "Process Control for Short and Small Runs," ASQC Quality Progress,
Vol. 26, No. 4, April 1993, pp. 51-60.

Walter A. Shewhart, Statistical Method from the Viewpoint of Quality Control, Dover
Publications, Mineola, NY, 1939, republished 1986.

Edward F. Weller, “Practical Applications of Statistical Process Control,” IEEE Software,
Vol. 17, No. 3, May/June 2000, pp. 48-55.

Donald J. Wheeler and David S. Chambers, Understanding Statistical Process
Control, Second Edition, SPC Press, Knoxville, TN, 1992.

Donald J. Wheeler and Sheila R. Poling, Building Continual Improvement: A Guide
for Business, SPC Press, Knoxville, TN, 1998.

17 Oct 2000 ICSQ 20001

Carnegie Mellon University
Software Engineering Institute

Applying SPC to the
Personal Software

ProcessSM

 Mark C. Paulk

 mcp@sei.cmu.edu -or- Mark.Paulk@ieee.org
 Software Engineering Institute

 Carnegie Mellon University
 Pittsburgh, PA 15213-3890

 Capability Maturity Model and CMM are registered in the U.S. Patent and Trademark Office.
 SM Capability Maturity Model Integration, CMMI, IDEAL, Personal Software Process, PSP, Team

Software Process, and TSP are service marks of Carnegie Mellon University.
 The Software Engineering Institute is a federally funded research and development center

sponsored by the U.S. Department of Defense.
 2000 by Carnegie Mellon University.

17 Oct 2000 ICSQ 20002

Carnegie Mellon University
Software Engineering Institute

Statistical Process Control

 The use of statistical tools and techniques

 to analyze a process
 or its outputs

 to control, manage, and improve
 the quality of the output

 or the capability of the process.

17 Oct 2000 ICSQ 20003

Carnegie Mellon University
Software Engineering Institute

SPC for Software Premises
 The software process is performed by people,
not machines.

 The software process is (or can be) repeatable,
but not repetitive.

 The act of measuring and analyzing will change
behavior – potentially in dysfunctional ways.

17 Oct 2000 ICSQ 20004

Carnegie Mellon University
Software Engineering Institute

Seven Basic SPC Tools
 Scatter diagrams

 Run charts

 Cause-and-effect diagrams

 Histograms

 Bar charts

 Pareto charts

 Control charts

“SPC” implies

control charts!

17 Oct 2000 ICSQ 20005

Carnegie Mellon University
Software Engineering Institute

Control Chart Basics

CL + 3σ

CL - 3σ

Upper Control
Limit (UCL)

Center Line (CL)

Lower Control
Limit (LCL)

CL

Time (or Sequence Number) →

17 Oct 2000 ICSQ 20006

Carnegie Mellon University
Software Engineering Institute

Process Variation
 Shewhart’s notion of dividing variation into two
types:
•common cause variation

- variation in process performance due to normal or
inherent interaction among process components
(people, machines, material, environment, and
methods).

•assignable cause variation
- variation in process performance due to events that

are not part of the normal process.
- represents sudden or persistent abnormal changes

to one or more of the process components.

17 Oct 2000 ICSQ 20007

Carnegie Mellon University
Software Engineering Institute

Equation Form

 total variation

 =

 common cause variation

 +

 assignable cause variation

17 Oct 2000 ICSQ 20008

Carnegie Mellon University
Software Engineering Institute

An Example Process in Statistical
Control

time

x
x x

x

xx
x

x

x
x x

x

xx
x x

x
x x

x

Frequency
of

Measured
Values

Variation in
Measured Values

17 Oct 2000 ICSQ 20009

Carnegie Mellon University
Software Engineering Institute

An Example Out-of-Control
Process

time
x

x x
x

x
x x

x
x

x x
x

xx
x x

x
x

x

Frequency
 of
Measurement
Value

Variation in
Measurement

x

17 Oct 2000 ICSQ 200010

Carnegie Mellon University
Software Engineering Institute

Useful Control Charts
 Hypothesis: begin with control charts for defect
data.

 Most likely to be of value for software processes
• XmR chart for attributes data
• u-chart
• Z-chart

 Wheeler: XbarR and XmR charts should satisfy 99% or
more of your control charting needs.

17 Oct 2000 ICSQ 200011

Carnegie Mellon University
Software Engineering Institute

What Control Chart Should be
Used?

Variables dataAttributes data

1< n <10n = 1

n > 10

X-bar, R
X-bar, SXmR

Poisson

Binomial

u
p np

Other

Control Chart

c

Area Opp
ConstantArea Opp

Variable

Area Opp
VariableArea Opp

Constant

17 Oct 2000 ICSQ 200012

Carnegie Mellon University
Software Engineering Institute

Assumptions
 Variable vs attribute

•usually known, usually (for most software
processes) attribute
- defects, rates, etc.

 Statistical distributions, e.g., normal, Poisson
•if a distributional assumption is made, it is

wise to check whether the assumption is
plausible

 Area of opportunity variable or constant
•typically size measure (SLOC or FP), usually

variable

17 Oct 2000 ICSQ 200013

Carnegie Mellon University
Software Engineering Institute

XmR Chart
 Assumes population standard deviation (sigma)
is constant across all observations
•measuring a common-cause system!

 Does not assume a particular statistical
distribution, e.g., Poisson or binomial data

 Weakness: “chunky data”
•range with less than four values
•average count less than 1

17 Oct 2000 ICSQ 200014

Carnegie Mellon University
Software Engineering Institute

 mR = moving Range
 (difference between successive data points)

 UNPLX = X + 2.66 (mR)

 CLX = X

 LNPLX = X - 2.66 (mR)

 URLmR = 3.27 (mR)

 CLmR = mR

XmR Chart Formulas

Notation: bar over
a variable indicates
“average” -- as does
the word “bar,”
e.g., Xbar

17 Oct 2000 ICSQ 200015

Carnegie Mellon University
Software Engineering Institute

Characterizing the PSP Data
 Analyze the PSP 7A, 8A, 9A, and 10A programs

•fairly stable, well-defined processes
•process still being refined in class (PSP2,

PSP2.1, and PSP3)
•design and code reviews are introduced with

PSP 7A

 Salient features of the data set
•same functionality being implemented
•same disciplined process across individuals
•each program produced and reviewed by a

different individual
- focus on differences between individuals with a

disciplined process

17 Oct 2000 ICSQ 200016

Carnegie Mellon University
Software Engineering Institute

Analyses Performed
 Possible confounding factors

•programming language
•experience of the student

 Use XmR charts to analyze process stability
•design effort
•design review rate
•design review defects
•coding effort
•code review rate
•code review defects
•defect removal efficiency before test

17 Oct 2000 ICSQ 200017

Carnegie Mellon University
Software Engineering Institute

Issues
 Separate analysis of

•C programmers versus all programming
languages

•experienced (5 or more years) programmers
versus all programmers

 Reviews are introduced in PSP 7A
•some programmers spent zero minutes in

design and/or code reviews

 Control charts of percentages may have bounds
above 100% or below 0% …

 Iterative removal of “assignable causes”

17 Oct 2000 ICSQ 200018

Carnegie Mellon University
Software Engineering Institute

PSP 7A
 Process PSP2

 Characteristic Code and design reviews

 Population All programming languages
 All programmers
 Experienced C programmers

17 Oct 2000 ICSQ 200019

Carnegie Mellon University
Software Engineering Institute

 X Chart - Design Effort PSP 7A
All Languages, All Programmers

0
1000
2000
3000
4000
5000
6000

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

Student

S
LO

C
/H

ou
r

17 Oct 2000 ICSQ 200020

Carnegie Mellon University
Software Engineering Institute

 X Chart - Design Effort PSP 7A
C, Experienced

0
500

1000
1500
2000
2500
3000
3500

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

Student

S
LO

C
/H

ou
r

17 Oct 2000 ICSQ 200021

Carnegie Mellon University
Software Engineering Institute

 X Chart - Design Review Rate PSP 7A
All Languages, All Programmers

0

2000

4000

6000

8000

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

Student

S
LO

C
/H

ou
r

17 Oct 2000 ICSQ 200022

Carnegie Mellon University
Software Engineering Institute

X Chart - Design Review Rate PSP 7A
C, Experienced

0

2000

4000

6000

8000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

Student

S
LC

O
/H

ou
r

17 Oct 2000 ICSQ 200023

Carnegie Mellon University
Software Engineering Institute

X Chart - Design Defects DR PSP 7A
All Languages, All Programmers

0

2

4

6

8

1 12 23 34 45 56 67 78 89 10
0

11
1

12
2

13
3

14
4

15
5

16
6

17
7

18
8

Student

E
xp

ec
te

d
D

ef
ec

ts

17 Oct 2000 ICSQ 200024

Carnegie Mellon University
Software Engineering Institute

X Chart - Design Defects DR PSP 7A
C, Experienced

0
1

2
3

4
5

6

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

Student

E
xp

ec
te

d
D

ef
ec

ts

17 Oct 2000 ICSQ 200025

Carnegie Mellon University
Software Engineering Institute

 X Chart - Code Effort PSP 7A
All Languages, All Programmers

0

200

400

600

800

1000

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

Student

S
LO

C
/H

ou
r

17 Oct 2000 ICSQ 200026

Carnegie Mellon University
Software Engineering Institute

X Chart - Code Effort PSP 7A
C, Experienced

0

200

400

600

800

1000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

Student

S
LO

C
/H

ou
r

17 Oct 2000 ICSQ 200027

Carnegie Mellon University
Software Engineering Institute

 X Chart - Code Review Rate PSP 7A
All Languages, All Programmmers

0

1000

2000

3000

4000

5000

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

Student

S
LO

C
/H

ou
r

17 Oct 2000 ICSQ 200028

Carnegie Mellon University
Software Engineering Institute

X Chart - Code Review Rate PSP 7A
C, Experienced

0
500

1000
1500
2000
2500
3000
3500

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

Student

S
LO

C
/H

ou
r

17 Oct 2000 ICSQ 200029

Carnegie Mellon University
Software Engineering Institute

 X Chart - Code Defects CR PSP 7A
All Languages, All Programmers

0

5

10

15

20

25

1 12 23 34 45 56 67 78 89 10
0

11
1

12
2

13
3

14
4

15
5

16
6

17
7

18
8

Student

E
xp

ec
te

d
D

ef
ec

ts

17 Oct 2000 ICSQ 200030

Carnegie Mellon University
Software Engineering Institute

X Chart - Code Defects CR PSP 7A
C, Experienced

0
2
4
6
8

10
12
14

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

Student

E
xp

ec
te

d
D

ef
ec

ts

17 Oct 2000 ICSQ 200031

Carnegie Mellon University
Software Engineering Institute

 X Chart - Defect Removal Efficiency PSP 7A
All Languages, All Programmers

0%

50%

100%

150%

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

Student

D
ef

ec
t R

em
ov

al

E
ff

ic
ie

nc
y

17 Oct 2000 ICSQ 200032

Carnegie Mellon University
Software Engineering Institute

X Chart - Defect Removal Efficiency PSP 7A
C, Experienced

0%
20%
40%
60%
80%

100%
120%
140%

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

Student

D
ef

ec
t R

em
ov

al

E
ff

ic
ie

nc
y

17 Oct 2000 ICSQ 200033

Carnegie Mellon University
Software Engineering Institute

PSP 7A -- Summary of Results
Variable LNPLx Xbar UNPLx Rbar UCLR

Design effort 0
0

175
203

521
470

130
100

555
428

Design review
rate

0
0

382
333

1132
1279

282
356

1204
1518

Design review
defects

0
0

2.4
1.0

5.8
4.7

1.3
1.4

5.4
5.9

Coding effort 0
0

109
110

262
273

58
61

245
262

Code review rate 0
0

242
298

647
884

152
220

649
941

Code review
defects

0
0

2.8
3.4

9.9
9.2

2.7
2.2

11.4
9.3

Defect removal
efficiency

25%
27%

79%
80%

134%
132%

20%
20%

87%
85%

17 Oct 2000 ICSQ 200034

Carnegie Mellon University
Software Engineering Institute

PSP 10A
 Process PSP3

 Characteristic Design and code reviews (2)
 Design templates (2.1)
 Cyclic development

 Population Experienced C programmers

17 Oct 2000 ICSQ 200035

Carnegie Mellon University
Software Engineering Institute

 X Chart - Design Effort PSP 10A
C, Experienced

0
100
200
300
400
500
600
700

1 4 7 10 13 16 19 22 25 28 31 34 37

Student

S
LO

C
/H

ou
r

17 Oct 2000 ICSQ 200036

Carnegie Mellon University
Software Engineering Institute

 X Chart - Design Review Rate PSP 10A
C, Experienced

0

500

1000

1500

2000

1 4 7 10 13 16 19 22 25 28 31 34 37

Student

S
LO

C
/H

ou
r

17 Oct 2000 ICSQ 200037

Carnegie Mellon University
Software Engineering Institute

 X Chart - Design Defects DR PSP 10A
C, Experienced

0

5

10

15

20

25

1 4 7 10 13 16 19 22 25 28 31 34 37

Student

E
xp

ec
te

d
D

ef
ec

ts

17 Oct 2000 ICSQ 200038

Carnegie Mellon University
Software Engineering Institute

 X Chart - Code Effort PSP 10A
C, Experienced

0

100

200

300

400

1 4 7 10 13 16 19 22 25 28 31 34 37

Student

S
LO

C
/H

ou
r

17 Oct 2000 ICSQ 200039

Carnegie Mellon University
Software Engineering Institute

X Chart - Code Review Rate PSP 10A
C, Experienced

0

500

1000

1500

2000

2500

1 4 7 10 13 16 19 22 25 28 31 34 37

Student

S
LO

C
/H

ou
r

17 Oct 2000 ICSQ 200040

Carnegie Mellon University
Software Engineering Institute

X Chart - Code Defects CR PSP 10A
C, Experienced

0
2
4
6
8

10
12
14

1 4 7 10 13 16 19 22 25 28 31 34 37

Student

E
xp

ec
te

d
D

ef
ec

ts

17 Oct 2000 ICSQ 200041

Carnegie Mellon University
Software Engineering Institute

X Chart - Defect Removal Efficiency PSP 10A
C, Experienced

0%
20%
40%
60%
80%

100%
120%
140%

1 4 7 10 13 16 19 22 25 28 31 34 37

Student

D
ef

ec
t R

em
ov

al

E
ff

ic
ie

nc
y

17 Oct 2000 ICSQ 200042

Carnegie Mellon University
Software Engineering Institute

PSP 10A -- Summary of Results

Variable LNPLx Xbar UNPLx Rbar UCLR

Design effort 0 108 322 81 344
Design review

rate
0 417 1453 390 1663

Design review
defects

0 1.0 4.2 1.2 5.1

Coding effort 0 138 361 84 358
Code review rate 0 384 1075 260 1109
Code review

defects
0 4.2 13.0 3.3 14.2

Defect removal
efficiency

30% 81% 132% 19% 82%

17 Oct 2000 ICSQ 200043

Carnegie Mellon University
Software Engineering Institute

Observations
 PSP 7A would not be a good time to drop out of
the PSP class …
•crucial learning is still occurring

 Between PSP 7A and 10A, a significant amount
of process stabilization is occurring.

 Both individuals (X) and moving range (mR)
charts were generated in this analysis, but all
signals on the mR chart corresponded to a signal
in the X chart, therefore are not shown here.

17 Oct 2000 ICSQ 200044

Carnegie Mellon University
Software Engineering Institute

Basis for High Variability
 Potential for 10:1 difference in the performance
of programmers (perhaps more)
•200:1 difference in the performance of teams

 What is the impact of a disciplined process on
consistency?

 What is the impact of a “jelled” team on
consistency?

 What is the impact of a good working
environment on consistency?

17 Oct 2000 ICSQ 200045

Carnegie Mellon University
Software Engineering Institute

Three SPC Questions
 What business value will SPC add to the
organization?
•important business objectives may include

better quality, reduced cycle time, etc.

 What statistical techniques are appropriate?
•correct implementation of appropriate

techniques is crucial to success

 Will introducing SPC cause dysfunctional
behavior?
•measurement changes behavior
•can all critical factors be effectively measured?

17 Oct 2000 ICSQ 200046

Carnegie Mellon University
Software Engineering Institute

General SEI Information
 SEI Customer Relations +1 (412) 268-5800

 SEI FAX number +1 (412) 268-5758

 Internet Address
 customer-relations@sei.cmu.edu

 Mailing Address
 Customer Relations
 Software Engineering Institute
 Carnegie Mellon University
 4500 Fifth Avenue
 Pittsburgh, PA 15213-3890

17 Oct 2000 ICSQ 200047

Carnegie Mellon University
Software Engineering Institute

Internet Access to SEI
 SEI Web pages

•www.sei.cmu.edu
•www.sei.cmu.edu/cmm/
•www.sei.cmu.edu/cmm/cmm.articles.html
•www.sei.cmu.edu/cmm/slides/slides.html

focus

0 7 4 0 - 7 4 5 9 / 0 0 / $ 1 0 . 0 0 © 2 0 0 1 I E E E N o v e m b e r / D e c e m b e r 2 0 0 1 I E E E S O F T W A R E 1

In this article, I summarize both XP
and the SW-CMM, show how XP can help
organizations realize the SW-CMM goals,
and then critique XP from a SW-CMM
perspective.

The Software CMM
The Software Engineering Institute at

Carnegie Mellon University developed the
SW-CMM as a model for building organi-
zational capability, and it has been widely
adopted in the software community and be-
yond. As Table 1 shows, the SW-CMM is a
five-level model that describes good engi-
neering and management practices and pre-
scribes improvement priorities for software
organizations.

Although the SW-CMM is described in a
book of nearly 500 pages, the requirements
for becoming a Level 5 organization are
concisely stated in 52 sentences—the 52
goals of the model’s 18 key process areas
(KPAs). The practices, subpractices, and ex-
amples that flesh out the model can guide

software professionals in making reason-
able, informed decisions about a broad
range of process implementations.

The SW-CMM informative materials fo-
cus primarily on large projects and large or-
ganizations. With minor tailoring and com-
mon sense, however, the model can be
applied in radically different environments,
ranging from two- to three-person projects
in small start-up companies to 500-person
projects building hard real-time, life-critical
systems.2,3 The SW-CMM’s rating compo-
nents are intentionally abstract, capturing
“universal truths” about high-performance
software organizations. As a glance at Table
2 shows, the KPAs are clearly important to
all types of software organizations.

With the exception of software subcon-
tract management, which applies only to
organizations that do subcontracting, the
KPAs and their goals can apply to any soft-
ware organization. Companies that focus
on innovation more than operational excel-
lence might downplay the role of consis-

Extreme Programming
from a CMM Perspective

Mark C. Paulk, Software Engineering Institute

XP has good
engineering
practices that
can work well
with the CMM
and other highly
structured
methods.
The key is
to carefully
consider XP
practices and
implement them
in the right
environment.

E
xtreme Programming is an “agile methodology” that some people
advocate for the high-speed, volatile world of Internet and Web
software development. Although XP is a disciplined process, some
have used it in arguments against rigorous software process im-

provement models such as the Software Capability Maturity Model.1

reports from the field

tency, predictability, and reliability, but per-
formance excellence is important even in
highly innovative environments.

Extreme Programming
The XP method is typically attributed to

Kent Beck, Ron Jeffries, and Ward Cun-
ningham.4,5 XP’s target is small to medium-
sized teams building software with vague or
rapidly changing requirements. XP teams
are typically colocated and have fewer than
10 members.

XP’s critical underlying assumption is that
developers can obviate the traditional high
cost of change using technologies such as ob-
jects, patterns, and relational databases, re-
sulting in a highly dynamic XP process. Beck’s
book is subtitled “Embrace Change,” and XP
teams typically deal with requirements
changes through an iterative life cycle with
short cycles.

The XP life cycle has four basic activities:
coding, testing, listening, and designing. Dy-
namism is demonstrated through four values:

� continual communication with the cus-
tomer and within the team;

� simplicity, achieved by a constant focus
on minimalist solutions;

� rapid feedback through mechanisms
such as unit and functional testing; and

� the courage to deal with problems
proactively.

Principles in practice
Most of XP’s principles—minimalism, sim-

plicity, an evolutionary life cycle, user involve-
ment, and so forth—are commonsense prac-
tices that are part of any disciplined process.
As Table 3 summarizes, the “extreme” in XP
comes from taking commonsense practices to
extreme levels. Although some people may in-
terpret practices such as “focusing on a mini-
malist solution” as hacking, XP is actually a
highly disciplined process. Simplicity in XP
terms means focusing on the highest-priority,
most valuable system parts that are currently
identified rather than designing solutions to
problems that are not yet relevant (and might
never be, given that requirements and operat-
ing environments change).

Although developers might use many dif-
ferent XP practices, the method typically
consists of 12 basic elements:

� Planning game: Quickly determine the
next release’s scope, combining business
priorities and technical estimates. The cus-
tomer decides scope, priority, and dates
from a business perspective, whereas tech-
nical people estimate and track progress.

� Small releases: Put a simple system into
production quickly. Release new ver-
sions on a very short (two-week) cycle.

� Metaphor: Guide all development with
a simple, shared story of how the over-
all system works.

Table 1
An overview of the Software CMM

Level Focus Key process areas

5: Optimizing Continual process improvement Defect prevention
Technology change management
Process change management

4: Managed Product and process quality Quantitative process management
Software quality management

3: Defined Engineering processes and organizational support Organization process focus
Organization process definition
Training program
Integrated software management
Software product engineering
Intergroup coordination
Peer reviews

2: Repeatable Project management processes Requirements management
Software project planning
Software project tracking and oversight
Software subcontract management
Software quality assurance
Software configuration management

1: Initial Competent people (and heroics)

2 I E E E S O F T W A R E N o v e m b e r / D e c e m b e r 2 0 0 1

� Simple design: Design as simply as pos-
sible at any given moment.

� Testing: Developers continually write
unit tests that must run flawlessly; cus-
tomers write tests to demonstrate func-
tions are finished. “Test, then code”
means that a failed test case is an entry
criterion for writing code.

� Refactoring: Restructure the system
without changing its behavior to re-
move duplication, improve communica-
tion, simplify, or add flexibility.

� Pair programming: All production code
is written by two programmers at one
machine.

� Collective ownership: Anyone can im-

prove any system code anywhere at
any time.

� Continuous integration: Integrate and
build the system many times a day
(every time a task is finished). Continual
regression testing prevents functionality
regressions when requirements change.

� 40-hour weeks: Work no more than 40
hours per week whenever possible; never
work overtime two weeks in a row.

� Onsite customer: Have an actual user on
the team full-time to answer questions.

� Coding standards: Have rules that empha-
size communication throughout the code.

These basic practices work together to cre-

N o v e m b e r / D e c e m b e r 2 0 0 1 I E E E S O F T W A R E 3

Table 2
The Software CMM key process areas and their purpose

Key process area Purpose

Maturity Level 2: Repeatable

Requirements management Establish a common understanding between the customer and software project team about the customer’s
requirements.

Software project planning Establish reasonable plans for software engineering and overall project management.
Software project tracking and oversight Provide adequate visibility into actual progress so that management can act effectively when the software

project’s performance deviates significantly from the software plans.
Software subcontract management Select qualified software subcontractors and manage them effectively.
Software quality assurance Provide management with appropriate visibility into the product and the software process.
Software configuration management Establish and maintain the integrity of software products throughout the project’s software life cycle.

Maturity Level 3: Defined

Organization process focus Establish organizational responsibility for software process activities that improve the organization’s overall
software process capability.

Organization process definition Develop and maintain a usable set of software process assets that improve process performance across the
projects and provide a basis for cumulative, long-term organizational benefits.

Training program Develop individuals’ skills and knowledge so they can perform their roles effectively and efficiently.
Integrated software management Integrate the software engineering and management activities into a coherent, defined software process

based on the organization’s standard software process and related process assets.
Software product engineering Consistently use a well-defined engineering process that integrates all the software engineering activities to

produce correct, consistent software products effectively and efficiently.
Intergroup coordination Establish a way for the software engineering group to participate actively with other engineering groups so

that the project can effectively and efficiently satisfy customer needs.
Peer reviews Remove defects from the software work products early and efficiently. An important corollary effect is to

develop a better understanding of the software products and the preventable defects.

Maturity Level 4: Managed

Quantitative process management Quantitatively control the performance of the software project’s process. Software process performance
represents the actual results achieved from following a software process.

Software quality management Quantify the quality of the project’s software products and achieve specific quality goals.

Maturity Level 5: Optimizing

Defect prevention Identify the cause of defects and prevent them from recurring.
Technology change management Identify new technologies (such as tools, methods, and processes) and introduce them into the organiza-

tion in an orderly manner.
Process change management Continually improve the organization’s software processes with the goal of improving software quality,

increasing productivity, and decreasing the product-development cycle time.

ate a coherent method. XP characterizes the
full system functionality using a pool of “sto-
ries,” or short feature descriptions. For the
planning game and small releases, the cus-
tomer must select a subset of stories that char-
acterize the most desirable work for develop-
ers to implement in the upcoming release.
Because the customer can add new stories to
the pool at any time, requirements are highly
volatile. However, volatility is managed by
implementing functionality in two-week
chunks. Having a customer onsite supports
this ongoing cycle of two-week releases.

XP developers generate a metaphor to
provide the project’s overarching vision. Al-
though you could view this as a high-level
architecture, XP emphasizes design, while at
the same time minimizing design documen-
tation. Some people have characterized XP
as not allowing documentation outside
code, but that is not quite accurate. Because
XP emphasizes continual redesign—using
refactoring whenever necessary—there is lit-
tle value to detailed design documentation
(and maintainers rarely trust anything other
than the code anyway).

XP developers typically throw away design
documentation after the code is written, al-
though they will keep it if it’s useful. They also
keep design documentation when the cus-
tomer stops coming up with new stories. At
that point, it’s time to put the system in moth-
balls and write a five- to 10-page “mothball
tour” of the system. A natural corollary of the
refactoring emphasis is to always implement
the simplest solution that satisfies the immedi-
ate need. Requirements changes are likely to
supersede “general solutions” anyway.

Pair programming is one of XP’s more
controversial practices, mainly because it
has resource consequences for the very man-
agers who decide whether or not to let a
project use XP. Although it might appear

that pair programming consumes twice the
resources, research has shown that it leads
to fewer defects and decreased cycle time.6

For a jelled team, the effort increase can be
as little as 15 percent, while cycle time is re-
duced by 40 to 50 percent. For Internet-time
environments, the increased speed to mar-
ket may be well worth the increased effort.
Also, collaboration improves problem solv-
ing, and increased quality can significantly
reduce maintenance costs. When considered
over the total life cycle, the benefits of pair
programming often more than pay for
added resource costs.

Because XP encourages collective owner-
ship, anyone can change any piece of code in
the system at any time. The XP emphasis on
continuous integration, continual regression
testing, and pair programming protects
against a potential loss of configuration con-
trol. XP’s emphasis on testing is expressed in
the phrase, “test, then code.” It captures the
principle that developers should plan testing
early and develop test cases in parallel with
requirements analysis, although the tradi-
tional emphasis is on black-box testing.
Thinking about testing early in the life cycle
is standard practice for good software engi-
neering, though it is too rarely practiced.

The basic XP management tool is the
metric, and the metric’s medium is the “big
visible chart.” In the XP style, three or four
measures are typically all a team can stand
at one time, and those should be actively
used and visible. One recommended XP
metric is “project velocity”—the number of
stories of a given size that developers can
implement in an iteration.

Adoption strategies
XP is an intensely social activity, and not

everyone can learn it. There are two conflict-
ing attitudes toward XP adoption. XP is gen-

4 I E E E S O F T W A R E N o v e m b e r / D e c e m b e r 2 0 0 1

Table 3
The “extreme” in Extreme Programming

Commonsense XP extreme XP implementation practice

Code reviews Review code all the time Pair programming
Testing Test all the time, even by customers Unit testing, functional testing
Design Make design part of everybody’s daily business Refactoring
Simplicity Always work with the simplest design that supports the system’s The simplest thing that could possibly work

current functionality
Architecture Everybody works to refine the architecture all the time Metaphor
Integration testing Integrate and test several times a day Continuous integration
Short iterations Make iterations extremely short—seconds, minutes, and hours Planning game

rather than weeks, months, and years

erally viewed as a system that demonstrates
emergent properties when adopted as a
whole. As the discussion thus far shows, there
are strong dependencies between many XP
practices, such as collective ownership and
continuous integration.

Nonetheless, some people recommend
adopting XP one practice at a time, focusing
on the team’s most pressing current prob-
lem. This is consistent with the attitude to-
ward change that XP is “just rules” and the
team can change the rules anytime as long
as they agree on how to assess the change’s
effects. Beck, for example, describes XP
practices as “etudes”: They help developers
master the techniques, but experienced
users can modify them as necessary.

XP and the CMM
The SW-CMM focuses on both the man-

agement issues involved in implementing ef-
fective and efficient processes and on system-
atic process improvement. XP, on the other
hand, is a specific set of practices—a “method-
ology”—that is effective in the context of
small, colocated teams with rapidly changing
requirements. Taken together, the two meth-
ods can create synergy, particularly in con-
junction with other good engineering and
management practices. I’ll now illustrate this
by discussing XP practices in relation to the
CMM KPAs and goals outlined in Table 2.

XP and Level 2 practices
XP addresses Level 2’s requirements man-

agement KPA through its use of stories, an
onsite customer, and continuous integration.
Although system requirements might evolve
dramatically over time, XP integrates feed-
back on customer expectations and needs by
emphasizing short release cycles and contin-
ual customer involvement. “Common under-
standing” is established and maintained
through the customer’s continual involvement
in building stories and selecting them for the
next release (in effect, prioritizing customer
requirements).

XP addresses software project planning
in the planning game and small releases.
XP’s planning strategy embodies Watts
Humphrey’s advice, “If you can’t plan well,
plan often.” The first three activities of this
KPA deal with getting the software team in-
volved in early planning. XP integrates the
software team into the commitment process

by having it estimate the effort involved to
implement customer stories; at the level of
two-week releases, such estimates are typi-
cally quite accurate. The customer maintains
control of business priorities by choosing
which stories to implement in the next release
with the given resources. By definition, the
XP life cycle is both incremental and evolu-
tionary. The project plan is not detailed for
the project’s whole life cycle, although the
system metaphor does establish a vision for
project direction. As a result, developers can
identify and manage risks efficiently.

XP addresses software project tracking
and oversight with the “big visual chart,”
project velocity, and commitments (stories)
for small releases. XP’s commitment process
sets clear expectations for both the customer
and the XP team at the tactical level and max-
imizes flexibility at the project’s strategic
level. The emphasis on 40-hour weeks is a
general human factors concern; although
CMM does not address it, having “rational
work hours” is usually considered a best
practice. XP also emphasizes open work-
spaces, a similar “people issue” that is outside
CMM’s scope. XP does not address software
subcontract management, which is unlikely to
apply in XP’s target environment.

While an independent software quality
assurance group is unlikely in an XP cul-
ture, SQA could be addressed by the pair-
programming culture. Peer pressure in an
XP environment can achieve SQA’s aim of
assuring conformance to standards, though
it does not necessarily give management vis-
ibility into nonconformance issues. Dealing
with process and product assurance using
peer pressure can be extraordinarily effec-
tive in a small team environment. However,
larger teams typically require more formal
mechanisms for objectively verifying adher-
ence to requirements, standards, and proce-
dures. Also, peer pressure might be ineffec-
tive when the entire team is being pushed,
just as a software manager might be vulner-
able to external pressure. This vulnerability
should be addressed at the organizational
level when considering SQA.

Although not completely and explicitly
addressed, software configuration manage-
ment is implied in XP’s collective ownership,
small releases, and continuous integration.
Collective ownership might be problematic
for large systems, where more formal com-

N o v e m b e r / D e c e m b e r 2 0 0 1 I E E E S O F T W A R E 5

Taken together,
the two methods

can create
synergy,

particularly
in conjunction

with other good
engineering and

management
practices.

munication channels are necessary to pre-
vent configuration management failures.

XP and Level 3 practices
At Level 3, XP addresses organization

process focus at the team rather than organi-
zational level. A focus on process issues is
nonetheless implied in adopting XP one prac-
tice at a time, as well as in the “just rules” phi-
losophy. Because XP focuses on software en-
gineering process rather than organizational
infrastructure issues, organizations adopting
XP must address this and other organization-
level processes, whether in a CMM-based
context or not.

Similarly, the various XP-related books,
articles, courses, and Web sites partially ad-
dress the organization process definition
and training program KPAs, but organiza-
tional assets are outside the scope of the XP
method itself. As a consequence, XP cannot
address integrated software management
because there may not be any organiza-
tional assets to tailor.

Several XP practices effectively address
software product engineering: metaphor,
simple design, refactoring, the “mothball”
tour, coding standards, unit testing, and
functional testing. XP’s de-emphasis of de-
sign documentation is a concern in many en-
vironments, such as hard real-time systems,

large systems, or virtual teams. In such envi-
ronments, good designs are crucial to suc-
cess, and using the refactoring strategy
would be high-risk. For example, if develop-
ers performed refactoring after a technique
such as rate-monotonic analysis proved that
a system satisfied hard real-time require-
ments, they’d have to redo the analysis. Such
an environment invalidates XP’s fundamen-
tal assumption about the low cost of change.

XP’s emphasis on communication—
through onsite customers and pair program-
ming—appears to provide as comprehensive
a solution to intergroup coordination as in-
tegrated product and process development.
In fact, XP’s method might be considered an
effective IPPD approach, although the soft-
ware-only context ignores multidiscipline
environments.

Pair programming addresses peer reviews,
and is arguably more powerful than many
peer review techniques since it adopts pre-
ventive concepts found in code reading and
literate programming. However, pair pro-
gramming’s relative lack of structure can
lessen its effectiveness. Empirical data on pair
programming is currently sparse but promis-
ing.6 To make informed trade-off decisions,
we’ll need more empirical research that con-
trasts and compares pair programming and
peer review techniques, especially more rig-
orous techniques such as inspections.

Beyond Level 3
XP addresses few of the Level 4 and 5

KPAs in a rigorous statistical sense, al-
though feedback during rapid cycles might
partially address defect prevention. Table 4
summarizes XP’s potential to satisfy CMM
KPAs, given the appropriate domain.

Many of the KPAs that XP either ignores
or only partially covers are undoubtedly ad-
dressed in real projects. XP needs manage-
ment and infrastructure support, even if it
does not specifically call for it.

Discussion
As the earlier comparison shows, XP gen-

erally focuses on technical work, whereas the
CMM generally focuses on management is-
sues. Both methods are concerned with “cul-
ture.” The element that XP lacks that is crucial
for the SW-CMM is the concept of “institu-
tionalization”—that is, establishing a culture
of “this is the way we do things around here.”

6 I E E E S O F T W A R E N o v e m b e r / D e c e m b e r 2 0 0 1

Table 4
XP satisfaction of key process areas, given the

appropriate environment
Level Key process area Satisfaction

2 Requirements management ++
2 Software project planning ++
2 Software project tracking and oversight ++
2 Software subcontract management —
2 Software quality assurance +
2 Software configuration management +
3 Organization process focus +
3 Organization process definition +
3 Training program —
3 Integrated software management —
3 Software product engineering ++
3 Intergroup coordination ++
3 Peer reviews ++
4 Quantitative process management —
4 Software quality management —
5 Defect prevention +
5 Technology change management —
5 Process change management —

+ Partially addressed in XP
+ + Largely addressed in XP (perhaps by inference)
— Not addressed in XP

Although implicit in some practices, such as
the peer pressure arising from pair program-
ming, XP largely ignores the infrastructure
that the CMM identifies as key to institution-
alizing good engineering and management
practices. Table 5 summarizes XP’s coverage
of institutionalization in its domain.

The CMM’s KPAs share common fea-
tures that implement and institutionalize
processes. Each KPA’s institutionalization
practices map to the area’s goals; a naïve XP
implementation that ignored these infra-
structure issues would fail to satisfy any
KPA. XP ignores some of these practices,
such as policies. XP addresses others, such
as training and SQA, by inference. It ad-
dresses still others—project-specific prac-
tices such as management oversight and
measurement—to a limited degree. As an
implementation model focused on the devel-
opment process, these issues are largely out-
side XP’s focus, but they are arguably cru-
cial for its successful adoption.

Size matters
Much of the formalism that characterizes

most CMM-based process improvement is
an artifact of large projects and severe relia-
bility requirements, especially for life-critical
systems. The SW-CMM’s hierarchical struc-
ture, however, is intended to support a range
of implementations through the 18 KPAs
and 52 goals that comprise the requirements
for a fully mature software process.

As systems grow, some XP practices be-
come more difficult to implement. XP is, af-
ter all, targeted toward small teams working
on small- to medium-sized projects. As proj-
ects become larger, emphasizing a good
architectural “philosophy” becomes increas-
ingly critical to project success. Major invest-
ment in product architecture design is one of
the practices that characterizes successful In-
ternet companies.7

Architecture-based design, designing for
change, refactoring, and similar design
philosophies emphasize the need to manage
change systematically. Variants of the XP
bottom-up design practices, such as architec-
ture-based design, might be more appropri-
ate in large-project contexts. In a sense, ar-
chitectural design that emphasizes flexibility
is the goal of any good object-oriented
methodology, so XP and object orientation
are well suited to one another. Finally, large

projects tend to be multidisciplinary, which
can be problematic given that XP is aimed at
software-only projects.

Why explore XP?
Modern software projects should capture

XP values, regardless of how radically their
implementation differs from XP’s. Organiza-
tions might call communication and simplic-
ity by other names, such as coordination and
elegance, but without these values, nontrivial
projects face almost insurmountable odds.

XP’s principles of communication and
simplicity are also fundamental for organi-
zations using the SW-CMM. When defining
processes, organizations should capture the
minimum essential information needed,
structure definitions using good software
design principles (such as information hid-
ing and abstraction), and emphasize useful-
ness and usability.2

For real-time process control, rapid feed-
back is crucial. Previous eras have captured
this idea in aphorisms such as “don’t throw
good money after bad”; in a quantitative
sense, we can view this as the soul of the
CMM’s Level 4. One of the consequences of
the cultural shift between Levels 1 and 2 is
the need to demonstrate the courage of our
convictions by being realistic about esti-
mates, plans, and commitments.

False opposition
The main objection to using XP for

process improvement is that it barely
touches the management and organizational
issues that the SW-CMM emphasizes. Im-
plementing the kind of highly collaborative
environment that XP assumes requires en-
lightened management and appropriate or-
ganizational infrastructure.

N o v e m b e r / D e c e m b e r 2 0 0 1 I E E E S O F T W A R E 7

Table 5
XP and institutionalization practices

Common feature (in each KPA) Practice Satisfaction

Commitment to perform Policy —
Leadership and sponsorship —

Ability to perform Organizational structures +
Resources and funding +
Training +

Measurement and analysis Measurement +
Verifying implementation Senior management oversight —

Project management oversight ++
Software quality assurance +

+ Partially addressed in XP
+ + Largely addressed in XP (perhaps by inference)
— Not addressed in XP

The argument that CMM’s ideal of a rig-
orous, statistically stable process is antithet-
ical to XP is unconvincing. XP has disci-
plined processes, and the XP process itself is
clearly well defined. We can thus consider
CMM and XP complementary. The SW-
CMM tells organizations what to do in gen-
eral terms, but does not say how to do it.
XP is a set of best practices that contains
fairly specific how-to information—an im-
plementation model—for a particular type
of environment. XP practices can be com-
patible with CMM practices (goals or
KPAs), even if they do not completely ad-
dress them.

M ost of XP consists of good prac-
tices that all organizations should
consider. While we can debate the

merits of any one practice in relation to
other options, to arbitrarily reject any of
them is to blind ourselves to new and po-
tentially beneficial ideas.

To put XP practices together as a
methodology can be a paradigm shift simi-
lar to that required for concurrent engineer-
ing. Although its concepts have been around
for decades, adopting concurrent engineer-
ing practices changes your product-building
paradigm. XP provides a systems perspec-
tive on programming, just as the SW-CMM
provides a systems perspective on organiza-
tional process improvement. Organizations
that want to improve their capability should
take advantage of the good ideas in both,
and exercise common sense in selecting and
implementing those ideas.

Should organizations use XP, as pub-
lished, for life-critical or high-reliability
systems? Probably not. XP’s lack of design
documentation and de-emphasis on archi-
tecture is risky. However, one of XP’s
virtues is that you can change and improve
it for different environments. That said,
when you change XP, you risk losing the
emergent properties that provide value in
the proper context. Ultimately, when you
choose and improve software processes,
your emphasis should be to let common
sense prevail—and to use data whenever
possible to offer insight on challenging
questions.

Acknowledgments
I gratefully acknowledge Kent Beck, Steve Mc-

Connell, and Laurie Williams for their comments.

References
1. M.C. Paulk et al., The Capability Maturity Model:

Guidelines for Improving the Software Process, Addi-
son-Wesley, Reading, Mass., 1995.

2. M.C. Paulk, “Using the Software CMM with Good
Judgment,” ASQ Software Quality Professional, vol. 1,
no. 3, June 1999, pp. 19–29.

3. D.L. Johnson and J.G. Brodman, “Applying CMM Pro-
ject Planning Practices to Diverse Environments,” IEEE
Software, vol. 17, no. 4, July/Aug. 2000, pp. 40–47.

4. K. Beck, Extreme Programming Explained: Embrace
Change, Addison-Wesley, Reading, Mass., 1999.

5. “eXtreme Programming Pros and Cons: What Ques-
tions Remain?” IEEE Computer Soc. Dynabook, J. Sid-
diqi, ed., Nov. 2000; www.computer.org/seweb/dyna-
book/index.htm (current 24 Sept. 2001).

6. L. Williams et al., “Strengthening the Case for Pair Pro-
gramming,” IEEE Software, vol. 17, no. 4, July/Aug.
2000, pp. 19–25.

7. A. MacCormack, “Product-Development Practices that
Work: How Internet Companies Build Software,” MIT
Sloan Management Rev., no. 42, vol. 2, Winter 2001,
pp. 75–84.

For more information on this or any other computing topic, please visit our
Digital Library at http://computer.org/publications/dlib.

8 I E E E S O F T W A R E N o v e m b e r / D e c e m b e r 2 0 0 1

Mark Paulk is a senior member of the
technical staff at the Software Engineering Insti-
tute. His current interests are in high-maturity
practices and statistical control for software
processes. He was “book boss” for Version 1.0 of
the Capability Maturity Model for Software and
project leader during the development of Soft-
ware CMM Version 1.1. He is also involved with
software engineering standards, including ISO

15504, ISO 12207, and ISO 15288. He received his bachelor’s degree in
mathematics and computer science from the University of Alabama in
Huntsville and his master’s degree in computer science from Vanderbilt Uni-
versity. Contact him at the Software Engineering Inst., Carnegie Mellon
Univ., Pittsburgh, PA 15213; mcp@sei.cmu.edu.

About the Author

 1

List of High Maturity Organizations
Last updated October 2002

The following list of high maturity organizations was compiled as part of our Survey of High Maturity Organizations and High Maturity Workshop research. By
popular request, it is being revived (at least temporarily). This Web page will probably be combined with the “List of Published Maturity Levels” at some point
in the future. For further information on published maturity levels, see that list and the maturity profile presentation at www.sei.cmu.edu/sema/welcome.html.
Note that an organization is not included in this list without its explicit permission.

The full set of 146 high maturity organizations, a subset of which is listed below, includes:

• 72 Level 4 organizations
• 74 Level 5 organizations

It is interesting to note that 87 of the high maturity organizations assessed are outside the United States.

Country Number of
Maturity Level 4

Organizations

Number of
Maturity Level 5

Organizations
Australia 2
Canada 1
China 2
France 1
India 27 50
Ireland 1
Israel 1
Russia 1
Singapore 1
USA 39 20

Please be aware of the following issues regarding this list.
• The SEI does not certify companies at maturity levels.
• The SEI does not confirm the accuracy of the maturity levels reported by the Lead Assessors or organizations.
• This list of Level 4 and 5 organizations is by no means exhaustive; we know of other high maturity organizations that have chosen not to be listed.
• The SEI did not use information stored within its Process Appraisal Information System to produce this document.
• The organizations listed gave explicit permission to publish this information.
• No information obtained in confidence was used to produce this list.

 2

The following information is contained in this table, as reported by the organization:
• Full name of the organization (with acronyms defined), including city and state (or country)
• Point of contact: name and email address
• Maturity level assessed
• Month and year of assessment
• Lead Assessor(s) (Lead Evaluators are annotated with LE. Some appraisers are both LAs and LEs. Some Lead Assessors are now inactive (I) and no

longer listed on the LA and LE lists.) (Include the form of assessment if different from CBA IPI with Lead Assessor.)

Name of Organization Country Contact Level Date

Assessed
Lead Assessor(s)

Alitec, Laval France Jerome Barbier, jeb@alitec.net
Jean Noel Martin, jnm@alitec.net

4 July 2000 Jean-Yves Le Goic

Atos Origin India (formerly Origin Information
Technology India Limited), Mumbai

India Darayus Desai,
darayus.desai@atosorigin.com

5 Nov 2000 (CAF-compliant
Process
Professional
Assessment
Method)

(Cyril Dyer -
Compita Assessor)

BAE SYSTEMS, Communication, Navigation
and Identification (CNI) Division,
Wayne, NJ

USA Peter J. Howard,
peter.howard@baesystems.com

5 March 2002 Marilyn Bush

BFL Software Limited, Bangalore India Madhukumar P.S.,
Madhukumar.PS@bflsoftware.com

4 June 1999 Carolyn Swanson

Boeing Company, Aircraft & Missiles &
Phantom Works Southern California, Long
Beach, CA

USA George H. Kasai,
george.h.kasai@boeing.com

5 Dec 1997 Andy Felschow
Jeff Facemire

Boeing Company, Military Aircraft & Missile
Systems F/A-18 Mission Computer, St.
Louis, MO

USA Bruce A. Boyd, bruce.a.boyd@boeing.com
Robert L. Allen,

robert.l.allen3@boeing.com

4 Nov 1999 (SCE)
Roy Queen (LE)
Jeff Perdue

Boeing Company, Reusable Space Systems and
Satellite Programs, Downey & Seal Beach,
CA

USA Don Dillehunt,
donald.d.dillehunt@boeing.com

5 Oct 1999 Andy Felschow
Jeff Facemire

 3

Name of Organization Country Contact Level Date
Assessed

Lead Assessor(s)

Boeing Company, Space Transportation
Systems, Kent, WA

USA Gary Wigle, gary.b.wigle@boeing.com 5 July 1996 Steve Masters
Mark Paulk
John Vu

CG-Smith Software Limited, Bangalore India G.N. Raghavendra Swamy,
raghav@cgs.cgsmith.soft.net

5 Sept 1999 Richard Storch

Citicorp Overseas Software Limited (COSL),
Mumbai

India Makarand Khandekar,
makarand.khandekar@citicorp.com

5 Oct 1999 John Sheckler

Cognizant Technology Solutions, Chennai India Emani BSP Sarathy, esarathy@chn.cts-
corp.com

5 Sept 2000 V. Kannan

Computer Sciences Corporation (CSC), Aegis
Program, , Moorestown, NJ

USA Wendy Irion Talbot, wirionta@csc.com 5 March 2001 Kathryn Gallucci
(LE)

Computer Sciences Corporation (CSC), Civil
Group, Greenbelt, MD

USA Mel Wahlberg, mwahlber@csc.com 4 Jan 2001 Paul Byrnes (LA &
LE)

Computer Sciences Corporation (CSC), Civil
Group, Systems, Engineering, and Analysis
Support (SEAS) Center, Greenbelt, MD

USA Frank McGarry, fmcgarry@csc.com
Mel Wahlberg, mwahlber@csc.com

5 Nov 1998 (SCE)
Paul Byrnes (LA &

LE)
Computer Sciences Corporation (CSC), Defense

Group Aerospace Information
Technologies, Dayton, OH

USA Cheryl Plak, cplak@csc.com 5 Feb 1999 (SCE)
Kathryn Gallucci

(LE)
Computer Sciences Corporation (CSC),

Integrated Systems Division (ISD),
Moorestown, NJ

USA Bryan Cooper, bcooper1@csc.com 4 May 1998 (SCE)
Paul Byrnes (LA &

LE)
Computer Sciences Corporation (CSC), Tactical

Systems Center (TSC), Moorestown, NJ
USA Wendy Irion Talbot, wirionta@csc.com

Jeff McGarry, jmcgarr1@csc.com
4 May 1998 (SCE)

Paul Byrnes (LA &
LE)

Covansys, San Francisco, CA USA Prasanth Kedarisetty,
KPrasanth@Covansys.com

4 Jan 2001 Richard Knudson

DCM Technologies, DCM ASIC Technology
Limited, New Delhi

India Naresh C. Maheshwari, ncm@dcmds.co.in 5 April 2000 Richard Storch

DSQ Software, Chennai India K.N. Ananth, kna@md.in.dsqsoft.com 4 June 1998 Judy Bamberger
Eastern Software Systems Ltd., New Delhi India Rajyashree, r-agarwala@essindia.co.in 5 April 2002 Santhanakrishnan

Srinivasan
Future Software Private Limited, Chennai India M.G. Thomas,

thomasmg@future.futsoft.com
4 June 1999 Pradeep Udhas

 4

Name of Organization Country Contact Level Date
Assessed

Lead Assessor(s)

HCL Perot Systems, Noida and Bangalore India Rakesh Soni, rakesh.soni@hpsglobal.com 5 Feb 2000 Pradeep Udhas
HCL Technologies Limited, Applications

Solutions Development Centre, Chennai
India N. N. Jha, nnjha@msdc.hcltech.com 4 May 2000 V. Kannan

HCL Technologies Limited, Core Technologies
Division, Chennai

India K. R. Gopinath, krg@hclt.com 4 Dec 2000 Krishnamurthy
Kothandaraman
Raman

HCL Technologies Limited, Gurgaon Software
Development Center, Gurgaon

India Sanjeev Gupta, gsanjeev@ggn.hcltech.com 5 June 2001 V. Kannan

Hewlett Packard India Software Operations
Limited, Bangalore

India Kousthuba, kou@india.hp.com 5 June 2000 Richard Storch

Hexaware Technologies Limited, Mumbai and
Chennai Operations, Chennai

India Sulochana Ganesan,
sulochana@hexaware.co.in

5 Dec 2000 V. Kannan

Honeywell International, Avionics Integrated
Systems (formerly AlliedSignal, Guidance
& Control Systems), Teterboro, NJ

USA Steve Janiszewski,
stephen.janiszewski@honeywell.com

4 Nov 1996 Larry Bramble (I)

Hughes Software Systems, Bangalore and
Gurgaon

India Gautam Brahma, gbrahma@hss.hns.com 4 Jan 2000 V. Kannan

IBM Global Services India, Bangalore India Asha Goyal, gasha@in.ibm.com
Maya Srihari, smaya@in.ibm.com

5 Nov 1999 Richard Storch

i-flex solutions limited (formerly Citicorp
Information Technology Industries Limited
aka CITIL), Bangalore

India Vivek V. Govilkar,
vivek.govilkar@iflexsolutions.com

4 Dec 1995 Ken Dymond

i-flex solutions limited (formerly Citicorp
Information Technology Industries Limited
aka CITIL), Mumbai

India Vivek Govilkar,
vivek.govilkar@citicorp.com

4 Dec 1995 Cindi Wise
Ken Dymond

i-flex solutions limited Data Warehouse Center
of Excellence, Bangalore

India Vivek V. Govilkar,
vivek.govilkar@iflexsolutions.com

5 Nov 1999 Ken Dymond
Santhanakrishnan

Srinivasan
Anand Kumar

i-flex solutions limited IT Services Division,
Bangalore

India Anand Kumar,
anand.kumar@iflexsolutions.com

5 Dec 2000 Santhanakrishnan
Srinivasan

Anand Kumar

 5

Name of Organization Country Contact Level Date
Assessed

Lead Assessor(s)

i-flex solutions limited IT Services Division,
Mumbai

India Anand Kumar,
anand.kumar@iflexsolutions.com

5 Dec 2000 Santhanakrishnan
Srinivasan

Anand Kumar
Atul Gupta

Information Technologies (India) Ltd., New
Delhi

India Arvind Sinha, arvindks@itil.com 5 April 2001 Srinivas
Thummalapalli

Information Technology (India) Ltd. , Delhi India Madhumita Poddar Sen,
madhumitap@itil.com

4 April 2000 Pradeep Udhas

Intelligroup Asia Private Limited, Advanced
Development Center, Hyderabad

India G.V.S. Sharma,
gvs.sharma@intelligroup.co.in

5 Oct 2000 Raghav S. Nandyal
John Harding

ITC Infotech India Limited, Bangalore India Paresh Master, pareshmaster@vsnl.com 5 Aug 2000 Richard Storch
Kshema Technologies Limited, Bangalore India V. Bhaskar, vbhaskar@kshema.com 5 July 2002 Krishnamurthy

Kothanda Raman
L & T Information Technology Limited,

Chennai
India Anil S. Pandit,

anil.pandit@vashimail.ltitl.com
4 Feb 2000 V. Kannan

Litton Guidance and Control Systems,
Woodland Hills, CA

USA Roy Nakahara, nakaharr@littongcs.com 4 Dec 1998 Mark Amaya

Litton/PRC Inc., McLean, VA and Colorado
Springs, CO

USA Al Pflugrad, pflugrad_al@prc.com 5 March 2000 (SCE)
Joseph Morin (LE)

Lockheed Martin Aeronautics Company
(formerly Lockheed Martin Tactical Aircraft
Systems - LMTAS), Fort Worth, TX

USA Phil Gould, philip.c.gould@lmco.com 4 Dec 1999 Leia Bowers White

Lockheed Martin Air Traffic Management,
Rockville, MD

USA Jim Sandford, jim.sandford@lmco.com 4 Dec 1999 Carol Granger-Parker
Jeff Facemire

Lockheed Martin Federal Systems, Owego, NY USA Ed Fontenot, ed.fontenot@lmco.com
Warren A. Schwomeyer,

warren.schwomeyer@lmco.com

5 Dec 1997 John Travalent
Mary Busby

Lockheed Martin Information Systems, Orlando,
FL

USA Michael Ziomek,
michael.ziomek@lmco.com

4 June 2000 Gene Jorgensen

Lockheed Martin Management & Data Systems,
King of Prussia, PA

USA M. Lynn Penn, mary.lynn.penn@lmco.com 5 Dec 2000 Andy Felschow
Carol Granger-Parker
Dennis Ring

 6

Name of Organization Country Contact Level Date
Assessed

Lead Assessor(s)

Lockheed Martin Mission Systems,
Gaithersburg, MD

USA Paul Weiler, paul.weiler@lmco.com
Al Aldrich, al.aldrich@lmco.com

5 Oct 1999 (SCE)
Paul Byrnes (LA &

LE)
Lockheed Martin Naval Electronics &

Surveillance Systems - Syracuse, Syracuse
NY

USA Peter Barletto, pete.barletto@lmco.com 5 Nov 1999 Carol Granger-Parker
Andy Felschow

Lockheed Martin Naval Electronics &
Surveillance Systems – Eagan, Eagan, MN

USA John Travalent, john.travalent@lmco.com 4 Oct 1999 Mary Busby

Lockheed Martin Naval Electronics &
Surveillance Systems – Manassas (formerly
Undersea Systems), Manassas, VA

USA Dana Roper, dana.roper@lmco.com 5 Feb 1999 Judah Mogilensky
John Travalent
Donald White

Lockheed Martin Naval Electronics &
Surveillance Systems – Moorestown,
Moorestown, NJ

USA Nghia N. Nguyen,
nghia.n.nguyen@lmco.com

Jeff Tait, jeffery.a.tait@lmco.com

4 Dec 1999 Kevin Schaan
Kent Johnson
Dennis Ring

Lockheed Martin Space Electronics and
Communications Systems – Manassas
(formerly Loral Federal Systems),
Manassas, VA

USA Dana Roper, dana.roper@lmco.com 4 June 1995 Judah Mogilensky
John Travalent
Chris Manak (I)

Mastek Limited, Mumbai India P. Rajshekharan, rajshekhar@mastek.com 5 Sept 2000 Ron Radice
Motorola Australia Software Centre, Adelaide Australia Peter Dew, pdew@asc.corp.mot.com 4 Aug 1997 John Pellegrin (I)
Motorola China Software Center, Beijing &

Nanjing
China John Jun'an Yu, johny@sc.mcel.mot.com 5 Sept 2000 Dan Weinberger

Patricia McNair
Motorola India Electronics Ltd. (MIEL),

Bangalore
India Sarala Ravishankar, sarala@miel.mot.com 5 Nov 1993 John Pellegrin (I)

Motorola, Asia Pacific Telecom Carrier
Solutions Group (TCSG) Applied R&D
Center, Beijing

China Graham Hu, qch1422@email.mot.com 5 Dec 2000 (CAF-compliant
Motorola QSR
Subsystem 10
Software
Assessment)

(Fathi Hakam --
Motorola
Assessor)

 7

Name of Organization Country Contact Level Date
Assessed

Lead Assessor(s)

Motorola, GSM (Global System for Mobile
Communications) Systems Division,
Network Systems Group, Arlington Heights,
IL

USA Barbara Hirsh, hirsh@cig.mot.com 5 Oct 1997 (CAF-compliant
Motorola QSR
Subsystem 10
Software
Assessment)

(Ellen Pickthall --
Motorola
Assessor)

NCR Corporation, Teradata Development
Division, Massively Parallel Systems, San
Diego, CA

USA Ron Weidemann,
ron.weidemann@sandiegoca.ncr.com

4 Oct 1999 Ron Weidemann

NeST Information Technologies (P) Ltd., Kerala India Mary Roselind Michael,
mary.roselind@nestinfotech.com

M.I. Theodore, theodore@nestinfotech.com

5 Nov 2001 Jack Hilbing

Network Systems and Technologies (P) Ltd,
Trivandrum

India S K Pillai, skp@nestec.net 5 May 2000 Ron Radice

NIIT Limited, New Delhi India Bhaskar Chavali, BhaskarC@niit.com 5 Sept 1999 Richard Storch
Northrop Grumman Electronic Sensors and

Systems Sector (ESSS), Baltimore, MD
USA Eva M. Brandt,

eva_m_brandt@md.northgrum.com
4 Oct 1999 John Blyskal

Northrop Grumman, Air Combat Systems,
Integrated Systems and Aeronautics Sector,
El Segundo, CA

USA Leitha Purcell,
purcele@mail.northgrum.com

4 Oct 1998 Don Dortenzo

Northrop Grumman, Integrated Systems &
Aerostructures, AEW & EW Systems
(formerly Surveillance & Battle
Management), Bethpage, NY

USA Dennis Carter,
cartede@mail.northgrum.com

4 Oct 1998 Andy Felschow

Oracle Software India Limited, India
Development Center, Bangalore

India Ashish Saigal, asaigal@in.oracle.com 4 May 1999 Pradeep Udhas

Oracle Solution Services (India) Private Limited,
Bangalore

India Jomon Jose, Jomon.Jose@oracle.com 4 June 2001 K.K. Raman

Patni Computer Systems Ltd. (PCS), Mumbai,
Navi Mumbai, Pune and Gandhinagar
Facilities, Mumbai

India Sunil Kuwalekar,
sunil.kuwalekar@patni.com

N A Nagwekar,
nilendra.nagwekar@patni.com

5 Aug 2000 Pradeep Udhas

 8

Name of Organization Country Contact Level Date
Assessed

Lead Assessor(s)

Philips Software Centre Private Limited,
Bangalore

India Ramachandran KV,
ramachandran.kv@philips.com

5 June 2000 Richard Knudson

Raytheon (formerly Raytheon E-Systems),
Garland, TX

USA Mary E. Howard,
mary_e_howard@raytheon.com

4 Dec 1998 Neil Potter

Raytheon C3I Fullerton Integrated Systems,
Command and Control Systems/Middle East
Operations, Fullerton, CA

USA Jane A. Moon, jmoon@west.raytheon.com
Janet Bratton,

jabratton@west.raytheon.com

5 Oct 1998 Paul Byrnes (LA &
LE)

Jane Moon
Ronald Ulrich
Ivan Flinn
Bruce Duncil (LA &

LE)
Janet Bratton

Raytheon Electronic Systems, Air & Missile
Defense Systems Surface Radar
(AMDS/SR), Tewksbury, Bedford,
Sudbury, MA

USA Michael Campo,
Michael_J_Campo@res.raytheon.com

4 June 2001 Janet Bratton
Ivan Flinn

Raytheon Missile Systems, Software
Engineering Center, Tucson, AZ

USA Michael D. Scott,
mscott1@west.raytheon.com

4 Oct 1998 John Ryskowski
Michael Scott

Raytheon, Electronic Systems, Sensors
Engineering, El Segundo, CA

USA Paul Curry, pcurry@west.raytheon.com 4 Oct 2000 Janet Bratton
Michael Scott
Ivan Flinn

Satyam Computer Services Ltd India Prabhuu Sinha, prabhuu@satyam.com 5 March 1999 Richard Knudson
Siemens Information Systems Limited (SISL),

Software Development Strategic Business
Unit (SBU), Bangalore

India T. Kathavarayan, kathavarayan.t@sisl.co.in 5 Sept 2001 Ajay Batra

Siemens Information Systems Limited (SISL),
Telecom & Major Projects Strategic
Business Unit (SBU), Gurgaon

India Neelima Yadav, Neelima.Yadav@sisl.co.in 5 Aug 2001 Ajay Batra

Silverline Technologies Limited, Mumbai India S. Purushotham, sp@silverline.com 4 Dec 1999 V. Kannan
Syntel, Mumbai and Chennai India Jonathan James,

jonathan_james@syntelinc.com
5 March 2001 Ajay Batra

Tata Consultancy Services, Ahmedabad India Gargi Keeni, gkeeni@mumbai.tcs.co.in
Rosemary Hedge, rhedge@ahd.tcs.co.in

5 Nov 2000 Ron Radice
P. Suresh

Tata Consultancy Services, Ambattur, Chennai India Gargi Keeni, gkeeni@mumbai.tcs.co.in 5 July 2000 Ron Radice

 9

Name of Organization Country Contact Level Date
Assessed

Lead Assessor(s)

Tata Consultancy Services, Bangalore India Gargi Keeni, gkeeni@mumbai.tcs.co.in
Uma Rijhwani,

umarijhwani@blore.tcs.co.in

5 Jan 2000 Ron Radice

Tata Consultancy Services, Calcutta India Gargi Keeni, gkeeni@mumbai.tcs.co.in
Arunava Chandra, achandra@tcscal.co.in

5 Jan 2000 Ron Radice

Tata Consultancy Services, Global Engineering
Development Center, Chennai

India Gargi Keeni, gkeeni@mumbai.tcs.co.in
M. Mala, mala@wst03.tata.ge.com

5 July 2000 John Harding

Tata Consultancy Services, Gurgaon II, New
Delhi

India Gargi Keeni, gkeeni@mumbai.tcs.co.in 5 Feb 2001 Ron Radice

Tata Consultancy Services, HP Centre, Chennai India Gargi Keeni, gkeeni@mumbai.tcs.co.in
P. Vasu, pvasu@hp.india.com

5 July 1999 Ron Radice

Tata Consultancy Services, Hyderabad India Gargi Keeni, gkeeni@mumbai.tcs.co.in
N V Jayaramakrishna,

jayaram@hydbad.tcs.co.in

5 May 2000 John Harding
Gargi Keeni

Tata Consultancy Services, Lucknow India Gargi Keeni, gkeeni@mumbai.tcs.co.in
Nirmal Kumar, nirmal_kumar@lko.tcs.co.in

5 Jan 2000 John Harding
Radhika Sokhi

Tata Consultancy Services, SEEPZ, Mumbai India Gargi Keeni, gkeeni@mumbai.tcs.co.in
P. Suresh, p.suresh@seepz.tcs.co.in

5 Aug 1999 Ron Radice

Tata Consultancy Services, Shollinganallur,
Chennai

India Gargi Keeni, gkeeni@mumbai.tcs.co.in
R. Ravishankar, rravisha@chennai.tcs.co.in

5 Nov 1999 Ron Radice

Tata Consultancy Services, US West, Chennai India Gargi Keeni, gkeeni@mumbai.tcs.co.in
R. Umasankar, rumasan@uswest.com

5 April 1999 Ron Radice
V. Muralidharan
John Harding

Tata Elxsi Limited, Bangalore India M. Thangarajan, mtr@teil.soft.net 4 Aug 1999 Pradeep Udhas
Telcordia Technologies, Inc., Morristown, NJ USA Bill Pitterman, wpitterm@telcordia.com

Ivan Handojo, Ihandojo@telcordia.com
5 May 1999 Pat O’Toole

Bill Curtis
Norm Hammock

U.S. Air Force, Ogden Air Logistics Center,
Technology & Industrial Support
Directorate, Software Engineering Division,
Hill AFB, UT

USA Jim Vanfleet, Jim.Vanfleet@Hill.af.mil 5 July 1998 Mark Paulk
Brian Larman
Donna Dunaway
Bonnie Bollinger
Millie Sapp
Mike Ballard

 10

Name of Organization Country Contact Level Date
Assessed

Lead Assessor(s)

U.S. Air Force, Oklahoma City Air Logistics
Center, Directorate of Aircraft Management,
Software Division, Test Software and
Industrial Automation Branches (OC-
ALC/LAS), Tinker AFB, OK

USA Kelley Butler, kelley.butler@tinker.af.mil 4 Nov 1996 Judah Mogilensky

U.S. Army Aviation & Missile Command,
Software Engineering Directorate, Redstone
Arsenal, Alabama, AL

USA Jacquelyn Langhout,
jackie.langhout@sed.redstone.army.mil

4 April 2000 David Zubrow

U.S. Army, Communications and Electronics
Command (CECOM), Software Engineering
Center (SEC), Fire Support Software
Engineering (Telos), Fort Sill, OK

USA Don Couch, couchdc@fssec.army.mil
Phil Sperling, sperlips@fssec.army.mil

4 Nov 1997 Don Couch
David Zubrow

U.S. Navy, F/A-18 Software Development Task
Team (SWDTT), Naval Air Warfare Center
Weapons Division (NAWCWD), China
Lake, CA

USA Claire Velicer, velicercm@navair.navy.mil 4 Feb 2000 Tim Olson
Ralph Williams

U.S. Navy, Fleet Material Support Office,
Mechanicsburg, PA

USA Kathleen D. Chastain,
kathleen_chastain@fmso.navy.mil

4 Oct 1998 John Smith
Ann Roberts

United Space Alliance, Space Shuttle Onboard
Software Project, Houston, TX

USA Julie Barnard,
julie.r.barnard@usahq.unitedspaceallia
nce.com

5 Nov 1989 (SCE -- before LA
and LE programs)

(Donald Sova)
US Technology Resources India (US Software
Pvt Ltd.), Trivandrum

India Arun Narayanan, arun_narayan@usswi.com
Sunil Balakrishnan, sunil_bala@usswi.com

5 Dec 2001 Anamika Chakravarty

Wipro GE Medical Systems, Bangalore India K. Puhazhendi,
k.puhazhendi@geind.ge.com

5 Jan 1999 Richard Knudson
C. Rama Rao

Wipro Technologies, Enterprise Solutions
Division, Bangalore

India T. V. Subbarao,
subbarao.tangirala@wipro.com

5 Dec 1998 Richard Storch

Wipro Technologies, Global R & D (formerly
Technology Solutions), Bangalore

India V. Subramanyam, vsm@wipinfo.soft.net 5 June 1999 Richard Knudson
Mark Paulk

Zensar Technologies Limited (formerly
International Computers India Limited),
Pune

India Ashok Sontakke, a.r.sontakke@icil.co.in 5 Feb 1999 Richard Knudson

 1

A Software Process Bibliography
Updated October 2002

This bibliography was developed for people interested in learning more about software process
management. It is neither authoritative nor exhaustive and should not be construed as an
endorsement for any of the books and papers that may be referenced. In some cases, papers
listed present diametrically opposed perspectives and are included to provide a balanced view of
the issues. Some papers take radical stances that may inspire useful discussion.

Please send suggestions and corrections to:

Mark C. Paulk
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
Email: mcp@sei.cmu.edu

The SEI’s Web page is http://www.sei.cmu.edu/

The SEI’s Capability Maturity Model for Software (CMM) Web page is
http://www.sei.cmu.edu/cmm/cmm.html

The SEI’s CMM Integration Web page is
http://www.sei.cmu.edu/cmm/cmms/cmms.integration.html

Many of my papers are on-line at http://www.sei.cmu.edu/cmm/cmm.articles.html. This
bibliograpy is online at http://www.sei.cmu.edu/activities/cmm/docs/biblio.html.

 2

Web resources that you may find of interest (sources of many of the papers below) include

��ASQ Software Division — http://www.asq.org/sd/swqweb.html

��Crosstalk: The Journal of Defense Software Engineering —
http://www.stsc.hill.af.mil/crosstalk/crostalk.html

��IEEE TCSE Software Process Newsletter —
http://www-se.cs.mcgill.ca/process/spn.html

��Maturity Profile Presentation — http://www.sei.cmu.edu/sema/profile.html

��Maturity Questionnaire —
http://www.sei.cmu.edu/publications/documents/94.reports/94.sr.007.html

��Practical Software Measurement — http://www.psmsc.com/

��Project Management Institute — http://www.pmi.org/

��Published Maturity Levels — http://www.sei.cmu.edu/sema/pub_ml.html

��Software Process Improvement Networks (SPINs) —
http://www.sei.cmu.edu/collaborating/spins/spins.html

��Software Program Managers Network — http://spmn.com/

There are also a number of useful slide presentations at
http://www.sei.cmu.edu/activities/cmm/slides/slides.html

 3

General Management, Process, and Quality .. 5

General Management Topics.. 5

Total Quality Management... 5

ISO 9000 Series.. 6

Software Engineering .. 7

General Software Engineering ... 7

Software Problems ... 7

Measurement .. 7

Software Process... 8

General Software Process.. 8

Agile Methodologies.. 9

Capability Maturity Model for Software .. 10

Software Process Assessment ... 11

Software Capability Evaluation ... 11

SEI Criticism.. 11

ISO 15504 (SPICE) .. 12

Various Appraisal Methods and Models.. 12

Case Studies of Software Process Improvement ... 12

Organizational Culture and Psychology .. 14

People Issues ... 14

Organizational Culture and Teams (IC) ... 15

Maturity Level 2 - Repeatable .. 16

Requirements Management (RM).. 16

 4

(Software) Project Planning (SPP).. 16

(Software) Project Management (PTO, ISM) .. 17

Customer-Supplier Relationship (SSM, Acquisition, Customer
Satisfaction) ... 18

Software Quality Assurance (SQA) ... 18

Software Configuration Management (SCM) .. 18

Maturity Level 3 - Defined.. 19

Organizational Process (OPF, OPD).. 19

Training (TP) ... 19

Risk Management... 20

Integrated Product and Process Development (Concurrent
Engineering).. 20

Software Engineering (SPE, SQM)... 20

Requirements... 20

Design.. 20

Programming... 21

Testing... 21

Peer Reviews (PR) .. 21

Maturity Level 4 - Managed ... 22

Statistical Process / Quality Control (QPM, SQM)..................................... 22

Product Knowledge Management: Domain Engineering, Product
Lines, and Reuse ... 23

Maturity Level 5 - Optimizing.. 24

Defect Prevention (DP) .. 24

Change Management (TCM, PCM) ... 24

 5

GENERAL MANAGEMENT, PROCESS, AND QUALITY

General Management Topics

Clayton M. Christensen, The Innovator’s Dilemma, Harvard Business School Press,
Cambridge, MA, 1997.

James C. Collins and Jerry I. Porras, Built to Last , HarperCollins Publishers, New York, NY,
1994.

Jim Collins, Good to Great, HarperCollins Publishers, New York, NY, 2001.

Eliyahu M. Goldratt, Critical Chain , North River Press, Great Barrington, MA, 1997.

Ann Langley, “Between ‘Paralysis by Analysis’ and ‘Extinction by Instinct’,” Sloan
Management Review, Vol. 36, No. 3, Spring 1995, pp. 63-76.

John Micklethwait and Adrian Wooldridge, The Witch Doctors: Making Sense of the
Management Gurus, Times Books, New York, NY, 1996.

Aaron J. Shenhar, Ofer Levy, and Dov Dvir, “Mapping the Dimensions of Project Success,”
Project Management Journal, Project Management Institute, Vol. 28, No. 2, June 1997, pp. 5-13.

Robert Simons, “Control in an Age of Empowerment,” Harvard Business Review, March-April
1995, pp. 80-88.

Michael Treacy and Fred Wiersema, The Discipline of Market Leaders, Addison-Wesley,
Reading, MA, 1997.

Karl E. Weick and Kathleen M. Sutcliffe, Managing the Unexpected: Assuring High
Performance in an Age of Complexity, Jossey-Bass, San Francisco, CA, 2001.

Margaret J. Wheatley, Leadership and the New Science, Berrett-Koehler Publishers, San
Francisco, CA, 1992.

Total Quality Management

Peter S. Bottcher and Robert W. Stoddard, “How Does Software Six Sigma Relate to the SEI
CMM?” Proceedings of the 7th International Conference on Software Quality, Montgomery,
Alabama, 6-8 October 1997, pp. 34-53.

P.B. Crosby, Quality is Free, McGraw-Hill, New York, NY, 1979.

W. Edwards Deming, Out of the Crisis, MIT Center for Advanced Engineering Study,
Cambridge, MA, 1986.

 6

W. Edwards Deming, The New Economics for Industry, Government, Education, Second
Edition, MIT Center for Advanced Educational Services, Cambridge, MA, 1994.

David A. Garvin, “Competing on the Eight Dimensions of Quality,” Harvard Business Review,
November-December 1987. Reprinted in IEEE Engineering Management Review, Vol. 24, No.
1, Spring 1996, pp. 15-23.

Michael Hammer and James Champy, Reengineering the Corporation: A Manifesto for
Business Revolution, HarperCollins, New York, New York, 1993.

Mikel Harry and Richard Schroeder, Six Sigma: The Breakthrough Management Strategy
Revolutionizing the World’s Top Corporations, Doubleday, New York, NY, 2000.

J.M. Juran, Juran on Planning for Quality, Macmillan, New York, NY, 1988.

Imai Masaaki, Kaizen: The Key to Japan’s Competitive Success, McGraw-Hill, New York,
NY, 1986.

Daniel Niven, “When Times Get Tough, What Happens to TQM?” Harvard Business Review,
May-June 1993, pp. 20-34.

Nelson P. Repenning and John D. Sterman, “Nobody Ever Gets Credit for Fixing Problems that
Never Happened: Creating and Sustaining Process Improvement,” California Management
Review, Vol. 43, No. 4, Summer 2001, pp. 64-88.

Peter M. Senge, The Fifth Discipline: The Art & Practice of the Learning Organization,
Doubleday/Currency, New York, NY, 1990.

ISO 9000 Series

Tomoo Matsubara, “Does ISO 9000 Really Help Improve Software Quality?,” American
Programmer, Vol. 7, No. 2, February 1994, pp. 38-45.

Mark C. Paulk, “How ISO 9001 Compares With the CMM,” IEEE Software, Vol. 12, No. 1,
January 1995, pp. 74-83.

D. Stelzer, W. Mellis, and G. Herzwurm, “Software Process Improvement via ISO 9000?
Results of Two Surveys Among European Software Houses,” Software Process: Improvement
and Practice, Vol. 2, Issue 3, September 1996, pp. 197-210.

“TickIT: A Guide to Software Quality Management System Construction and Certification Using
EN29001, Issue 2.0,” U.K. Department of Trade and Industry and the British Computer Society,
28 February 1992.

 7

SOFTWARE ENGINEERING

General Software Engineering

Frederick P. Brooks, Jr, The Mythical Man-Month: Essays on Software Engineering
Anniversary Edition, Addison-Wesley, Reading, MA, 1995.

Frederick Brooks, Jr, “No Silver Bullet: Essence and Accidents of Software Engineering,” IEEE
Computer, Vol. 20, No. 4, April 1987, pp. 10-19.

Tom DeMarco, Why Does Software Cost So Much?, Dorset House, New York, NY, 1995.

Norman Fenton, Shari Lawrence Pfleeger, and Robert Glass, “Science and Substance: A
Challenge to Software Engineers,” IEEE Software, Vol. 11, No. 4, July 1994, pp. 86-95.

Capers Jones, Assessment and Control of Software Risks, PTR Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1994.

Mary Shaw, “Prospects for an Engineering Discipline of Software,” IEEE Software, Vol. 7, No.
6, November 1990, pp. 15-24.

Software Problems

“Report of the Defense Science Board Task Force on Military Software,” Department of
Defense, Office of the Under Secretary of Defense for Acquisition, Washington, D.C.,
September 1987.

Robert N. Charette, "No One Could Have Done Better," American Programmer, July 1995, pp.
21-28.

Jim Johnson, “Chaos: The Dollar Drain of IT Project Failures,” Application Development
Trends, January 1995, pp. 41-47.

Cem Kaner, “Legal Issues Related to Software Quality,” Software Quality, ASQ Software
Division, No. 2, 1997-98, pp. 1-10.

J.H. Paul and G.C. Simon, “Bugs in the Program: Problems in Federal Government Computer
Software Development and Regulation,” Staff Study for the House Committee on Science,
Space, and Technology, September 1989.

Measurement

Robert D. Austin, Measuring and Managing Performance in Organizations, Dorset House
Publishing, New York, NY, 1996.

 8

Anita D. Carleton, Robert E. Park, et al., “Software Measurement for DoD Systems:
Recommendations for Initial Core Measures,” Software Engineering Institute, Carnegie Mellon
University, CMU/SEI-92-TR-19, 1992.

Michael K. Daskalantonakis, “A Practical View of Software Measurement and Implementation
Experience With Motorola,” IEEE Transactions on Software Engineering, Vol. 18, No. 11,
November 1992, pp. 998-1010.

Norman Fenton, “Software Measurement: A Necessary Scientific Basis,” IEEE Transactions on
Software Engineering, Vol. 20, No. 3, March 1994, pp. 199-206.

Robert B. Grady, Practical Software Metrics For Project Management and Process
Improvement, Prentice Hall, Englewood Cliffs, NJ, May 1992.

Capers Jones, Applied Software Measurement, 2nd Edition, McGraw Hill, New York, NY,
1997.

Shari L. Pfleeger, “Lessons Learned in Building a Corporate Metrics Program,” IEEE Software,
May 1993, pp. 67-74.

Lawrence H. Putnam and Ware Myers, Industrial Strength Software: Effective Management
Using Measurement, IEEE Computer Society Press, Los Alamitos, CA, 1997.

Edward R. Tufte, The Visual Display of Quantitative Information, Graphics Press, Cheswick,
CT, 1983.

Gerald M. Weinberg, Quality Software Management Vol. 2: First-Order Measurement,
Dorset House Publishing, New York, New York, 1993.

SOFTWARE PROCESS

General Software Process

R.D. Austin and D.J. Paulish, “A Survey of Commonly Applied Methods for Software Process
Improvement,” Software Engineering Institute, Carnegie Mellon University, CMU/SEI-93-TR-
27, 1993.

James Bach, “The Challenge of ‘Good Enough’ Software,” American Programmer, Vol. 8, No.
10, October 1995, pp. 2-11.

Kim Caputo, CMM Implementation Guide: Choreographing Software Process
Improvement, Addison-Wesley, Reading, MA, April 1998.

 9

Bill Curtis, Herb Krasner, and N. Iscoe, “A Field Study of the Software Design Process for Large
Systems,” Communications of the ACM, Vol. 31, No. 11, November 1988, pp. 1268-1287.

Khaled El Emam and Nazim H. Madhavji (editors), Elements of Software Process Assessment
and Improvement, IEEE Computer Society Press, Los Alamitos, CA, 1999.

Robert B. Grady, Successful Software Process Improvement, Prentice Hall, Englewood Cliffs,
NJ, May 1997.

Watts S. Humphrey, A Discipline for Software Engineering, Addison-Wesley Publishing
Company, Reading, MA, 1995.

Watts S. Humphrey, Introduction to the Team Software Process, Addison-Wesley Longman
Inc, Reading, MA, 1999.

Robin B. Hunter and Richard H. Thayer (editors), Software Process Improvement, IEEE
Computer Society Press, Los Alamitos, CA, 2001.

Craig Kaplan, Ralph Clark, and Victor Tang, Secrets of Software Quality, McGraw-Hill, New
York, NY, 1995.

Steve Maguire, Debugging the Development Process, Microsoft Press, Redmond, WA, 1994.

Steve McConnell, Rapid Development: Taming Wild Software Schedules, Microsoft Press,
Redmond, WA, 1996.

Mark C. Paulk, “Software Process Proverbs,” Crosstalk: The Journal of Defense Software
Engineering, Vol. 10, No. 1, January 1997, pp. 4-7.

Karl Wiegers, Creating a Software Engineering Culture, Dorset House Publishing, New York,
NY, 1996.

Laurie Ann Williams, “The Collaborative Software Process,” PhD Dissertation, University of
Utah, August 2000.

Agile Methodologies

Richard Baskerville, Linda Levine, et al., “How Internet Software Companies Negotiate
Quality,” IEEE Computer, Vol. 34, No. 5, May 2001, pp. 51-57.

Kent Beck, Extreme Programming Explained: Embrace Change, Addison-Wesley, Reading,
MA, 1999.

Alistair Cockburn, Agile Software Development, Addison-Wesley, Boston, MA, 2002.

 10

James A. Highsmith, Adaptive Software Development: A Collaborative Approach to
Managing Complex Systems, Dorset House, New York, NY, 2000.

Alan MacCormack, “Product-Development Practices That Work: How Internet Companies Build
Software,” MIT Sloan Management Review, Vol. 42, No. 2, Winter 2001, pp. 75-84.

Michele Marchesi, Giancarlo Succi, Don Wells, and Laurie Williams (ed), Extreme
Programming Perspectives, Addison-Wesley, Boston, MA, 2002.

Mark C. Paulk, “Extreme Programming from a CMM Perspective,” IEEE Software, Vol. 18, No.
6, November/December 2001, pp. 19-26.

Ken Schwaber and Mike Beedle, Agile Software Development with Scrum, Prentice Hall,
Upper Saddle River, NJ, 2002.

Stanley A. Smith and Michael A. Cusumano, “Beyond the Software Factory: A Comparison of
‘Classic’ and PC Software Developers,” Massachusetts Institute of Technology, Sloan School
WP#3607-93\BPS, 1 September 1993.

Laurie Williams and Robert Kessler, Pair Programming Illuminated, Addison-Wesley,
Boston, MA, 2002.

Capability Maturity Model for Software

Kenneth M. Dymond, A Guide to the CMM, Process Inc US, Annapolis, MD, 1995.

Mark Ginsberg and Lauren Quinn, “Process Tailoring and the Software Capability Maturity
Model,” Software Engineering Institute, Carnegie Mellon University, CMU/SEI-94-TR-024,
November 1995.

Watts S. Humphrey, Managing the Software Process, Addison-Wesley, Reading, MA, 1989.

Donna L. Johnson and Judith G. Brodman, “Tailoring the CMM for Small Businesses, Small
Organizations, and Small Projects,” Software Process Newsletter, IEEE Computer Society
Technical Council on Software Engineering, No. 8, Winter 1997, p. 1-6.

Mark C. Paulk, Charles V. Weber, Bill Curtis, and Mary Beth Chrissis, The Capability
Maturity Model: Guidelines for Improving the Software Process, Addison-Wesley
Publishing Company, Reading, MA, 1995.

Mark C. Paulk, Bill Curtis, Mary Beth Chrissis, and Charles V. Weber, “Capability Maturity
Model, Version 1.1,” IEEE Software, Vol. 10, No. 4, July 1993, pp. 18-27.

Mark C. Paulk, “The Evolution of the SEI’s Capability Maturity Model for Software,” Software
Process: Improvement and Practice, Vol. 1, No. 1, Spring 1995.

 11

Mark C. Paulk, “Using the Software CMM With Good Judgment,” ASQ Software Quality
Professional, Vol. 1, No. 3, June 1999, pp. 19-29.

Software Process Assessment

"Appraisal Requirements for CMMI Version 1.1 (ARC)," Carnegie Mellon University, Software
Engineering Institute, CMU/SEI-2001-TR-024, December 2001.

Donna K. Dunaway and Steve M. Masters, “CMM-Based Appraisal for Internal Process
Improvement (CBA IPI): Method Description,” Software Engineering Institute, Carnegie
Mellon University, CMU/SEI-96-TR-007, 1996.

Khaled El Emam and Dennis R. Goldenson, " An Empirical Review of Software Process
Assessments," National Research Council of Canada, Institute for Information Technology,
November 1999.

Mark C. Paulk, Watts S. Humphrey, and George J. Pandelios, “Software Process Assessments:
Issues and Lessons Learned,” Proceedings of ISQE92, Juran Institute, 10-11 March 1992, pp.
4B/41-4B/58.

Software Capability Evaluation

Joseph J. Besselman, Paul Byrnes, Cathy J. Lin, Mark C. Paulk, and Rajesh Puranik, “Software
Capability Evaluations: Experiences from the Field,” SEI Technical Review ‘93, 1993.

Paul Byrnes and Mike Phillips, “Software Capability Evaluation Version 3.0 Method
Description,” Software Engineering Institue, Carnegie Mellon University, CMU/SEI-96-TR-002,
1996.

Maj. George A. Newberry, “The Relationship Between the SEI’s CMM Levels and Source
Selection,” Crosstalk: The Journal of Defense Software Engineering, Vol. 9, No. 5, May 1996,
p. 6.

David Rugg, “Using a Capability Evaluation to Select a Contractor,” IEEE Software, Vol. 10,
No. 4, July 1993, pp. 36-45.

SEI Criticism

James Bach, “Enough About Process: What We Need Are Heroes,” IEEE Software, Vol. 12, No.
2, February 1995, pp. 96-98.

 12

James Bach, “The Immaturity of the CMM,” American Programmer, Vol. 7, No. 9, September
1994, pp. 13-18.

Bill Curtis, “A Mature View of the CMM,” American Programmer, Vol. 7, No. 9,
September 1994, pp. 19-28.

T. Bollinger and C. McGowan, “A Critical Look at Software Capability Evaluations,” IEEE
Software, Vol. 8, No. 4, July 1991, pp. 25-41.

Watts S. Humphrey and Bill Curtis, “Comments on ‘A Critical Look’,” IEEE
Software, Vol. 8, No. 4, July 1991, pp. 42-46.

Capers Jones, Chapter 5, “Artificial Maturity Levels,” in Assessment and Control of Software
Risks, PTR Prentice-Hall, Inc., Englewood Cliffs, NJ, 1994, pp. 63-70. See also pp. 19-20 and
23-26.

Capers Jones, “The SEI’s CMM—Flawed?,” Software Development, Vol. 3, No. 3, March 1995,
pp. 41-48.

Hossein Saiedian and Richard Kuzara, “SEI Capability Maturity Model’s Impact on
Contractors,” IEEE Computer, Vol. 28, No. 1, January 1995, pp. 16-26.

ISO 15504 (SPICE)

Alec Dorling, “Software Process Improvement and Capability dEtermination,” Software Quality
Journal, Vol. 2, No. 4, December 1993, pp. 209-224.

David H. Kitson, “An Emerging International Standard for Software Process Assessment,”
Proceedings of the Third IEEE International Software Engineering Standards Symposium
and Forum, Walnut Creek, CA, 1-6 June 1997, pp. 83-90.

Various Appraisal Methods and Models

Sarah A. Sheard, “The Frameworks Quagmire,” Crosstalk: The Journal of Defense Software
Engineering, Vol. 10, No. 9, September 1997.

H.E. Thomson and P. Mayhew, “Approaches to Software Process Improvement,” Software
Process: Improvement and Practice, Vol. 3, Issue 1, March 1997, pp. 3-17.

Case Studies of Software Process Improvement

C. Billings, J. Clifton, B. Kolkhorst, E. Lee, and W.B. Wingert, “Journey to a Mature Software
Process,” IBM Systems Journal, Vol. 33, No. 1, 1994, pp. 46-61.

 13

Kelley Butler and Walter Lipke, “Software Process Achievement at Tinker Air Force Base,”
Carnegie Mellon University, Software Engineering Institute, CMU/SEI-2000-TR-014,
September 2000.

Bradford K. Clark, “The Effects of Software Process Maturity on Software Development Effort,”
PhD Dissertation, Computer Science Department, University of Southern California, August
1997.

Michael Diaz and Joseph Sligo, “How Software Process Improvement Helped Motorola,” IEEE
Software, Vol. 14, No. 5, September/October 1997, pp. 75-81.

Pat Ferguson, Gloria Leman, Prasad Perini, Susan Renner, and Girish Seshagiri, “Software
Process Improvement Works!” Carnegie Mellon University, Software Engineering Institute,
CMU/SEI-99-TR-027, November 1999.

Thomas J. Haley, “Raytheon’s Experience in Software Process Improvement,” IEEE Software,
Vol. 13, No. 6, November 1996, pp. 33-41.

Donald E. Harter, Mayuram S. Krishnan, and Sandra A. Slaughter, “Effects of Process Maturity
on Quality, Cycle Time, and Effort in Software Product Development,” Management Science,
Vol. 46, No. 4, April 2000, pp. 451-466.

Will Hayes and James W. Over, “The Personal Software Process (PSP): An Empirical Study of
the Impact of PSP on Individual Engineers,” Software Engineering Institute, Carnegie Mellon
University, CMU/SEI-97-TR-001, December 1997.

James Herbsleb, David Zubrow, Dennis Goldenson, Will Hayes, and Mark Paulk, “Software
Quality and the Capability Maturity Model,” Communications of the ACM, Vol. 40, No. 6, June
1997, pp. 30-40.

Declan P. Kelly and Bill Culleton, “Process Improvement for Small Organizations,” IEEE
Computer, Vol. 32, No. 10, October 1999, pp. 41-47.

Herb Krasner, “Accumulating the Evidence for the Payoff of Software Process Improvement –
1997,” http://www.utexas.edu/coe/sqi/archive/krasner/spi.pdf.

Patricia K. Lawlis, Robert M. Flowe, and James B. Thordahl, “A Correlational Study of the
CMM and Software Development Performance,” Crosstalk: The Journal of Defense Software
Engineering, Vol. 8, No. 9, September 1995, pp. 21-25.

Frank McGarry, Rose Pajerski, et al, “Software Process Improvement in the NASA Software
Engineering Laboratory,” Software Engineering Institute, Carnegie Mellon University,
CMU/SEI-94-TR-22, December 1994.

Thomas McGibbon, "A Business Case for Software Process Improvement Revised," Data and
Analysis Center for Software, 30 Sept 1999.

 14

Jeff Nowell, “An Analysis of Software Process Improvement,” [performed at the Oklahoma City
Air Logistics Center, Directorate of Aircraft, Software Division (LAS), Tinker AFB, Oklahoma;
prepared for the Deputy Assistant Secretary of the Air Force, Communications, Computers, and
Support Systems (SAF/AQK), Washington, DC], Software Productivity Research, Burlington,
MA, 26 September 1994.

Sandra A. Slaughter, Donald E. Harter, and Mayuram S. Krishnan, “Evaluating the Cost of
Software Quality,” Communications of the ACM, 41(8) 67-73, August 1998. Reprinted in
Engineering Management Review, 26(4) 32-37, Winter 1998.

R.R. Willis, R.M. Rova, et al, “Hughes Aircraft’s Widespread Deployment of a Continuously
Improving Software Process,” Software Engineering Institute, Carnegie Mellon University,
CMU/SEI-98-TR-006, May 1998.

Harvey Wohlwend and Susan Rosenbaum, “Schlumberger’s Software Improvement Program,”
IEEE Transactions on Software Engineering, Vol. 20, No. 11, November 1994, pp. 833-839.

George Yamamura and Gary B. Wigle, “SEI CMM Level 5: For the Right Reasons,” Crosstalk:
The Journal of Defense Software Engineering, Vol. 10, No. 8, August 1997, pp. 3-6.

ORGANIZATIONAL CULTURE AND PSYCHOLOGY

People Issues

Larry L. Constantine, Constantine on Peopleware, Yourdon Press Computing Series,
Englewood Cliffs, NJ, 1995.

Bill Curtis, William E. Hefley, and Sally A. Miller, People Capability Maturity Model,
Addison-Wesley Publishing Company, Reading, MA, 2001.

Robyn M. Dawes, Rational Choice in an Uncertain World, Harcourt Brace Jovanovich
College Publishers, Orlando, FL, 1988.

Tom DeMarco and Timothy Lister, Peopleware, 2nd Edition, Dorset House, New York, NY,
1999.

Paul J. DiMaggio and Walter W. Powell, “The Iron Cage Revisited: Institutional Isomorphism
and Collective Rationality in Organizational Fields,” American Sociological Review, Vol. 48,
April 1983, pp. 147-160.

Roger Fisher, William Ury, and Bruce Patton, Getting to Yes: Negotiating Agreement
Without Giving In, Second Edition, Penguin, 1991.

Robert L. Glass, Software Creativity, Prentice Hall, Englewood Cliffs, NJ, 1995.

 15

Watts S. Humphrey, Managing Technical People, Addison-Wesley Publishing Company,
Reading, MA, 1997.

Thomas Teal, “The Human Side of Management,” Harvard Business Review,
November/December 1996, pp. 35-44.

Robert Townsend, Up the Organization: How to Stop the Corporation from Stifling People
and Strangling Profits, Fawcett Crest, New York, NY, 1970.

William Ury, Getting Past No : Negotiating Your Way from Confrontation to Cooperation,
Bantam Doubleday, 1993.

Gerald M. Weinberg, The Psychology of Computer Programming, Van Nostrand Reinhold,
New York, NY, 1971.

Gerald M. Weinberg, Quality Software Management Volume 3: Congruent Action, Dorset
House Publishing, New York, New York, 1994.

Organizational Culture and Teams (IC)

Karen Bemowski, “What Makes American Teams Tick?” ASQC Quality Progress, Vol. 28, No.
1, January 1995, pp. 39-43.

Charles Handy, Gods of Management: The Changing Work of Organizations – Third
Edition , Oxford University Press, New York, New York, 1991.

Jon R. Katzenbach and Douglas K. Smith, The Wisdom of Teams, HarperCollins, New York,
NY, 1993.

Robert Pool, “When Failure Is Not An Option,” MIT Technology Review, July 1997. Reprinted
in IEEE Engineering Management Review, Vol. 27, No. 1, Spring 1999, pp. 27-31.

Peter R. Scholtes, Brian L. Joiner, and Barbara J. Streibel, The TEAM Handbook, Second
Edition, Oriel Incorporated, Madison, WI, 1996.

Michael Schrage, No More Teams! Mastering the Dynamics of Creative Collaboration,
Currency Doubleday, New York, NY, 1989.

 16

MATURITY LEVEL 2 - REPEATABLE

Requirements Management (RM)

Barry Boehm and Hoh In, “Cost vs. Quality Requirements: Conflict Analysis and Negotiation
Aids,” ASQ Software Quality Professional, Vol. 1, No. 2, March 1999, pp. 38-50.

Herb Krasner, “Requirements Dynamics in Large Software Projects,” Proceedings of the 11th
World Computer Congress (IFIP89), Elsevier Science Publishers B.V., Amsterdam, The
Netherlands, August 1989.

Gerald M. Weinberg, “Requirements as the Foundation of Measurement,” Chapter 19 in Quality
Software Management Vol. 2: First-Order Measurement, Dorset House Publishing, New
York, New York, 1993, pp. 295-306.

(Software) Project Planning (SPP)

Tarek K. Abdel-Hamid and Stuart E. Madnick, “Impact of Schedule Estimation on Software
Project Behavior,” IEEE Software, Vol. 3, No. 4, July 1986, pp. 70-75.

Barry W.Boehm, Ellis Horowitz, et al, Software Cost Estimation with COCOMO II, Prentice
Hall, Upper Saddle River, NJ, 2000.

Alan M. Davis, “Software Life Cycle Models,” Software Engineering Project Management,
Second Edition, R.H. Thayer (ed), IEEE Computer Society Press, Los Alamitos, CA, 1997, pp.
105-114.

J. Hihn and H. Habib-Agahi, “Cost Estimation of Software Intensive Projects: A Survey of
Current Practices,” Proceedings of the 13th International Conference on Software
Engineering, Austin, TX, 13-17 May 1991, pp. 276-287.

Albert L. Lederer and Jayesh Prasad, “Nine Management Guidelines for Better Cost Estimating,”
Communications of the ACM, Vol. 35, No. 2, February 1992, pp. 51-59.

Steve McConnell, "The Nine Deadly Sins of Project Planning," IEEE Software,
September/October 2001, pp. 5-7.

Robert E. Park, “A Manager’s Checklist for Validating Software Cost and Schedule Estimates”,
American Programmer, Vol. 9, No. 6, June 1996, pp. 30-35.

 17

(Software) Project Management (PTO, ISM)

Tarek Abdel-Hamid and Stuart E. Madnick, Software Project Dynamics, Prentice-Hall,
Englewood Cliffs, NJ, 1991.

David I. Cleland, Project Management: Strategic Design and Implementation, Second
Edition, McGraw-Hill, New York, NY, 1994.

Larry L. Constantine, Beyond Chaos: The Expert Edge in Managing Software Development,
Addison-Wesley, Boston, MA, 2001.

Kenneth G. Cooper, “The Rework Cycle: Vital Insights into Managing Projects,” IEEE
Engineering Management Review, Fall 1993, pp. 4-12.

Kenneth G. Cooper, “The $2,000 Hour,” IEEE Engineering Management Review, Vol. 22, No.
4, Winter 1994, pp. 12-23.

Jane T. Lochner, “16 Critical Software Practices for Performance-Based Management,”
Crosstalk: The Journal of Defense Software Engineering, Vol. 12, No. 10, October 1999, pp. 6-9

Tom DeMarco, Controlling Software Projects, Yourdon Press, New York, NY, 1982.

Tom Gilb, Principles of Software Engineering Management, Addison-Wesley, Reading, MA,
1988.

Neil C. Olsen, “The Software Rush Hour,” IEEE Software, Vol. 10, No. 5, September 1993, pp.
29-37.

George Stark, Robert C. Durst, and C.W. Vowell, “Using Metrics in Management Decision
Making,” IEEE Computer, Vol. 27, No. 9, September 1994, pp. 42-49.

H.J. Thamhain and D.L. Wilemon, “Criteria for Controlling Projects According to Plan,” Project
Management Journal, June 1986, pp. 75-81. Reprinted in Software Engineering Project
Management, R.H. Thayer (ed), IEEE Computer Society Press, 1988, pp. 392-398.

N. Whitten, Managing Software Development Projects, 2nd Edition, John Wiley and Sons,
New York, NY, 1995.

Stuart Woodward, “Evolutionary Project Management,” IEEE Computer, Vol. 32, No. 10,
October 1999, pp. 49-57.

 18

Customer-Supplier Relationship (SSM, Acquisition, Customer
Satisfaction)

Thomas O. Jones and W. Earl Sasser, Jr., “Why Satisfied Customers Defect,” Harvard Business
Review, November/December 1995. Reprinted in IEEE Engineering Management Review, Fall
1998, Vol. 26, No. 3, pp. 16-26.

B. Craig Meyers and Patricia Oberndorf, Managing Software Acquisition: Open Systems and
COTS Products, Addison-Wesley, Reading, MA, 2001.

Jim Nielsen and Ann Miller, “Selecting Software Subcontractors,” IEEE Software, Vol. 13, No.
4, July 1996, pp. 104-109.

Software Quality Assurance (SQA)

M.A. Aquino, “Improvement vs. Compliance: A New Look at Auditing,” ASQC Quality
Progress, October 1990, pp. 47-49.

F.J. Buckley and R. Poston, “Software Quality Assurance,” IEEE Transactions on Software
Engineering, Vol. SE-10, No. 1, January 1984, pp. 36-41.

F. J. Buckley, “The Roles of a SQA Person,” ACM Software Engineering Notes, Vol. 12, No. 3,
July 1987, pp. 42-44.

Rushby Craig, "Software Quality Assurance in a CMM Level 5 Organization," Crosstalk: The
Journal of Defense Software Engineering, May 1999, pp. 11-15.

Software Configuration Management (SCM)

E.H. Bersoff, “Elements of Software Configuration Management,” IEEE Transactions on
Software Engineering, January 1984, pp. 27-35. Reprinted in Software Engineering Project
Management, R.H. Thayer (ed), IEEE Computer Society Press, 1988, pp. 430-438.

E.H. Bersoff and A.M. Davis, “Impacts of Life Cycle Models on Software Configuration
Management,” Communications of the ACM, Vol. 34, No. 8, August 1991, pp. 105-118.

Susan A. Dart, “The Past, Present, and Future of Configuration Management,” Software
Engineering Institute, Carnegie Mellon University, CMU/SEI-92-TR-8, 1992.

Peter H. Feiler, “Configuration Management Models in Commercial Environment,” Software
Engineering Institute, Carnegie Mellon University, CMU/SEI-91-TR-7, 1991.

 19

MATURITY LEVEL 3 - DEFINED

Organizational Process (OPF, OPD)

James W. Armitage, Marc I. Kellner, and Richard W. Phillips, “Software Process Definition
Guide: Content of Enactable Software Process Definitions,” Software Engineering Institute,
Carnegie Mellon University, CMU/SEI-93-SR-18, August 1993.

Bill Curtis, Herb Krasner, Vincent Shen, and Neil Iscoe, “On Building Software Process Models
Under the Lamppost,” Proceedings of the Ninth International Conference on Software
Engineering, Monterey, CA, IEEE Computer Society, 30 March - 2 April 1987, pp. 96-103.

Bill Curtis, Marc I. Kellner, and Jim Over, “Process Modeling,” Communications of the ACM,
Vol. 35, No. 9, September 1992, pp. 75-90.

A. Dandekar and D.E. Perry, “Barriers to Effective Process Architecture – An Experience
Report,” Software Process: Improvement and Practice, Vol. 2, Issue 1, March 1996, pp. 13-20.

Priscilla Fowler and Stan Rifkin, “Software Engineering Process Group Guide,” Software
Engineering Institute, Carnegie Mellon University, CMU/SEI-90-TR-24, September 1990.

Marc I. Kellner, Raymond J. Madachy, and David M. Raffo, “Software Process Simulation
Modeling: Why? What? How?” The Journal of Systems and Software, Vol. 46, No. 2-3, 15 April
1999, pp. 91-105.

Ray Madachy and Denton Tarbet, “Initial Experiences in Software Process Modeling,” ASQ
Software Quality Professional, Vol. 2, No. 3, June 2000, pp. 15-27.

Stan Rifkin, "What I Would Do Differently If I Wrote the SEPG GuideToday," SEPG
Conference 2002, Phoenix, AZ, 18-21 February 2002.

Training (TP)

Chris Argyris, “Teaching Smart People How to Learn,” Harvard Business Review, May/June
1991, pp. 99-109.

David A. Garvin, “Building a Learning Organization,” Harvard Business Review, July/August
1993, pp. 78-91.

W. Wiggenhorn, “Motorola U: When Training Becomes an Education,” Harvard Business
Review, July/August 1990, pp. 71-83.

 20

Risk Management

Peter L. Bernstein, Against the Gods: The Remarkable Story of Risk, ISBN 0-471-29563-9,
John Wiley & Sons, New York, NY, 1996.

B.W. Boehm (ed), Software Risk Management, IEEE Computer Society Press, July 1989.

Robert N. Charette, “Large-Scale Project Management is Risk Management,” IEEE Software,
Vol. 13, No. 4, July 1996, pp. 110-117.

Barbara Kitchenham and Stephen Linkman, “Estimates, Uncertainty, and Risk,” IEEE Software,
Vol. 14, No. 3, May/June 1997, pp. 69-74.

Ray C. Williams, Julie A. Walker, and Audrey J. Dorofee, “Putting Risk Management Into
Practice,” IEEE Software, Vol. 14, No. 3, May/June 1997, pp. 75-82.

Integrated Product and Process Development (Concurrent
Engineering)

J.D. Blackburn, G. Hoedemaker, and L.N. Van Wassenhove, “Concurrent Software Engineering:
Prospects and Pitfalls,” IEEE Transactions on Engineering Management, Vol. 43, No. 2, May
1996, pp. 179-188.

R.P. Smith, “The Historical Roots of Concurrent Engineering Fundamentals,” IEEE Transactions
on Engineering Management, Vol. 44, No. 1, February 1997, pp. 67-78.

Durward K. Sobek II, Jeffrey K. Liker, and Allen C. Ward, “Another Look at How Toyota
Integrates Product Development,” Harvard Business Review, July/August 1998. Reprinted in
IEEE Engineering Management Review, Vol. 26, No. 4, Winter 1998, pp. 69-78.

Software Engineering (SPE, SQM)

Requirements

D.C. Gause and Gerald M. Weinberg, Exploring Requirements: Quality Before Design,
Dorset House, New York, NY, 1989.

Ralph R. Young, Effective Requirements Practices, Addison-Wesley, Reading, MA, 2001.

Design

Len Bass, Paul Clements, and Rick Kazman, Software Architecture in Practice, Addison-
Wesley, Reading, MA, 1998.

 21

Paul Clements, Rick Kazman, and Mark Klein, Evaluating Software Architectures: Methods
and Case Studies, Addison-Wesley, Reading, MA, 2001.

Programming
Watts S. Humphrey, “CASE Planning and the Software Process,” Software Engineering Institute,
Carnegie Mellon University, CMU/SEI-89-TR-26, May 1989.

Testing
Ilene Burnstein, Ariya Homyen, et al, “A Testing Maturity Model for Software Test Process
Assessment and Improvement,” ASQ Software Quality Professional, Vol. 1, Issue 4, September
1999, pp. 8-21.

Gregory T. Daich, “Emphasizing Software Test Process Improvement,” Crosstalk: The Journal
of Defense Software Engineering, Vol. 9, No. 6, June 1996, pp. 20-26.

Peer Reviews (PR)

A.F. Ackerman, L.S. Buchwald, and F.H. Lewski, “Software Inspections: An Effective
Verification Process,” IEEE Software, Vol. 6, No. 3, May 1989, pp. 31-36.

M.E. Fagan, “Advances in Software Inspections,” IEEE Transactions on Software Engineering,
Vol. 12, No. 7, July 1986, pp. 744-751. Reprinted in Software Engineering Project
Management,, R.H. Thayer (ed), IEEE Computer Society Press, 1988, pp. 416-423.

Daniel P. Freedman and Gerald M. Weinberg, Handbook of Walkthroughs, Inspections, and
Technical Reviews, Third Edition, Dorset House, New York, NY, 1990.

Robert L. Glass, "Inspections - Some Surprising Findings," Communications of the ACM, April
1999, pp. 17-19.

Robert Grady and Tom Van Slack, “Key Lessons in Achieving Widespread Inspection Use,”
IEEE Software, Vol. 11, No. 4, July 1994, pp. 46-57.

Philip M. Johnson and Danu Tjahjono, “Does Every Inspection Really Need a Meeting?”
Empirical Software Engineering, Kluwer Academic Publishers, Vol. 3, No. 1, Boston, MA,
1998, pp. 9-35.

John C. Knight and E. Ann Myers, “An Improved Inspection Technique,” Communications of
the ACM, Vol. 36, No. 11, November 1993, pp. 51-61.

Vahid Mashayekhi, Janet M. Drake, Wei-Tek Tsai, and John Riedl, “Distributed, Collaborative
Software Inspection,” IEEE Software, Vol. 10, No. 5, September 1993, pp. 66-75.

David L. Parnas and David M. Weiss, “Active Design Reviews: Principles and Practices,”
Journal of Systems and Software, Vol. 7, No. 4, December 1987, pp. 259-265.

 22

Ronald A. Radice, High Quality Low Cost Software Inspections, Paradoxicon Publishing,
Andover, MA, 2002.

G. Russell, “Inspection in Ultralarge-Scale Development,” IEEE Software, Vol. 8, No. 1, January
1991, pp. 25-31.

Edward F. Weller, “Lessons from Three Years of Inspection Data,” IEEE Software, Vol. 10, No.
5, September 1993, pp. 38-45.

Karl E. Wiegers, Peer Reviews in Software, Addison-Wesley, Reading, MA, 2002.

MATURITY LEVEL 4 - MANAGED

Mark C. Paulk, Dennis Goldenson, and David M. White, “The 1999 Survey of High Maturity
Organizations,” Software Engineering Institute, Carnegie Mellon University, CMU/SEI-2000-
SR-002, February 2000.

Mark C. Paulk and Mary Beth Chrissis, “The 2001 High Maturity Workshop,” Software
Engineering Institute, Carnegie Mellon University, CMU/SEI-2001-SR-014, January 2002.

Statistical Process / Quality Control (QPM, SQM)

George E.P. Box and Soren Bisgaard, “The Scientific Context of Quality Improvement,” ASQC
Quality Progress, June 1987, pp. 54-61. Reprinted in IEEE Engineering Management Review,
Vol. 24, No. 1, Spring 1996, pp. 33-42.

Michael Brassard and Diane Ritter, The Memory Jogger II, GOAL/QPC, Methuen, MA, 1994.

Norman Fenton and Martin Neil, “A Critique of Software Defect Prediction Models,” IEEE
Transactions on Software Engineering, Vol. 25, No. 5, September/October 1999, pp. 675-689.

William A. Florac and Anita D. Carleton, Measuring the Software Process: Statistical Process
Control for Software Process Improvement, Addison-Wesley, Reading, MA, 1999.

William A. Florac, Anita D. Carleton, and Julie Barnard, “Statistical Process Control: Analyzing
a Space Shuttle Onboard Software Process,” IEEE Software, Vol. 17, No. 4, July/August 2000,
pp. 97-106.

Lynne B. Hare, Roger W. Hoerl, John D. Hromi, and Ronald D. Snee, “The Role of Statistical
Thinking in Management,” ASQC Quality Progress, Vol. 28, No. 2, February 1995, pp. 53-60.

Dan Houston, “Cost of Software Quality: Justifying Software Process Improvement to
Managers,” ASQ Software Quality Professional, Vol. 1, No. 2, March 1999, pp. 8-16.

 23

K. Ishikawa, Guide to Quality Control, Asian Productivity Organization, Tokyo, Japan,
(available from Unipub - Kraus International Publications, White Plains, NY) 1986.

Stephen H. Kan, Metrics and Models in Software Quality Engineering, Addison-Wesley,
Reading, MA, February 1995.

J.D. Musa and A.F. Ackerman, “Quantifying Software Validation: When to Stop Testing?” IEEE
Software, Vol. 6, No. 3, May 1989, pp. 19-27.

J.D. Musa, A. Iannino, and K. Okumoto, Software Reliability: Measurement, Prediction,
Application, McGraw-Hill, New York, NY, 1987.

M.A. Ould, “CMM and ISO 9001,” Software Process: Improvement and Practice, Vol. 2, Issue
4, December 1996, pp.281-289.

Thomas Pyzdek, “Process Control for Short and Small Runs,” ASQC Quality Progress, Vol. 26,
No. 4, April 1993, pp. 51-60.

Edward F. Weller, “Practical Applications of Statistical Process Control,” IEEE Software, Vol.
17, No. 3, May/June 2000, pp. 48-55.

Donald J. Wheeler, Understanding Variation: The Key to Managing Chaos, SPC Press,
Knoxville, TN, 1993.

Donald J. Wheeler, “Charts Done Right,” Quality Progress, Vol. 27, No. 6, June 1994, pp. 65-68.

Donald J. Wheeler and Sheila R. Poling, Building Continual Improvement: A Guide for
Business, SPC Press, Knoxville, TN, 1998.

Product Knowledge Management: Domain Engineering, Product
Lines, and Reuse

Joe Besselman and Stan Rifkin, “Exploiting the Synergism Between Product Line Focus and
Software Maturity,” Proceedings of the 1995 Acquisition Research Symposium, Washington,
D.C., pp. 95-107.

Paul Clements and Linda Northrop, Software Product Lines: Practices and Patterns, Addison-
Wesley, Reading, MA, 2001.

Shari L. Pfleeger, “Measuring Reuse: A Cautionary Tale,” IEEE Software, Vol. 13, No. 4, July
1996, pp. 118-127.

Kurt C. Wallnau, Scott A. Hissam, and Robert C. Seacord, Building Systems from Commercial
Components, Addison-Wesley, Reading, MA, 2001.

 24

MATURITY LEVEL 5 - OPTIMIZING

Defect Prevention (DP)

Inderpal Bhandari, Michael Halliday, et al., “A Case Study of Software Process Improvement
During Development,” IEEE Transactions on Software Engineering, Vol. 19, No. 12, December
1993, pp. 1157-1170.

David N. Card, “Learning from Our Mistakes with Defect Causal Analysis,” IEEE Software,
Vol. 15, No. 1, January/February 1998, pp. 56-63.

R. Chillarege and I. Bhandari, “Orthogonal Defect Classification – A Concept for In-Process
Measurements,” IEEE Software, Vol. 18, No. 11, November 1992, pp. 943-955.

Bonnie Collier, Tom DeMarco, and Peter Fearey, “A Defined Process for Project Postmortem
Review,” IEEE Software, Vol. 13, No. 4, July 1996, pp. 65-72.

Julia L. Gale, Jesus R. Tirso, and C. Art Burchfield, “Implementing the Defect Prevention
Process in the MVS Interactive Programming Organization,” IBM Systems Journal, Vol. 29, No.
1, 1990, pp. 33-43.

C.L. Jones, “A Process-Integrated Approach to Defect Prevention,” IBM Systems Journal, Vol.
24, No. 2, 1985, pp. 150-167.

Juichirou Kajihara, Goro Amamiya, and Tetsuo Saya, “Learning from Bugs,” IEEE Software,
Vol. 10, No. 5, September 1993, pp. 46-54.

R.G. Mays, C.L. Jones, G.J. Holloway, and D.P. Studinski, “Experiences with Defect
Prevention,” IBM Systems Journal, Vol. 29, No. 1, 1990, pp. 4-32.

Norman Bridge and Corinne Miller, “Orthogonal Defect Classification Using Defect Data to
Improve Software Development,” Proceedings of the 7th International Conference on
Software Quality, Montgomery, Alabama, 6-8 October 1997, pp. 197-213.

Change Management (TCM, PCM)

Eric Abrahamson, “Change Without Pain,” Harvard Business Review, July-August 2000, pp. 75-
79.

Victor R. Basili, Michael K. Daskalantonakis, and Robert H. Yacobellis, “Technology Transfer
at Motorola,” IEEE Software, Vol. 11, No. 2, March 1994, pp. 70-76.

M. Beer, R.A. Eisenstat, and B. Spector, “Why Change Programs Don’t Produce Change,”
Harvard Business Review, November/December 1990, pp. 158-166.

 25

Roger E. Bohn, “Measuring and Managing Technological Knowledge,” Sloan Management
Review, Fall 1994. Reprinted in IEEE Engineering Management Review, Vol. 25, No. 4,
Winter 1997, pp. 77-88.

Alan M. Davis, “Why Industry Often Says ‘No Thanks’ to Research,” IEEE Software, November
1992, pp. 97-99.

R. Fichman and C.F. Kemerer, “The Illusory Diffusion of Innovations: An Examination of
Assimilation Gaps,” Information Systems Research, Vol. 10, No. 3, September 1999, pp. 255-
275.

Barbara Kitchenham, Lesley Pickard, and Shari Lawrence Pfleeger, “Case Studies for Method
and Tool Evaluation,” IEEE Software, July 1995, pp. 52-62.

John P. Kotter, “Leading Change: Why Transformation Efforts Fail,” Harvard Business Review,
March-April 1995, pp. 59-67.

Geoffrey A. Moore, Crossing the Chasm, HarperCollins Publishers, New York, NY, 1991.

E.M. Rogers, Diffusion of Innovations, Third Edition, The Free Press, New York, NY, 1983.

R. H. Schaffer and H. A. Thomson, “Successful Change Programs Begin with Results,” Harvard
Business Review, January/February 1992, pp. 80-89.

Software CMM Presentations

Welcome

Capability
Maturity
Modeling

Team &
Personal
Software
Process

IDEAL Model

Risk
Management

Software
Engineering
Measurement &
Analysis (SEMA)

Software
Engineering
Information
Repository
(SEIR)

Software
Process
Improvement
Networks
(SPINs)

Appraiser
Program

Acronyms

SEI Initiatives

Conferences

Education &
Training

Software CMM® Presentations

This page contains links to a number of slide sets related to the Software CMM and
software process improvement (SPI). As is true for all presentations, the discussion by
the presenter is important for a complete understanding of the material, but these slides
may be useful and are provided with the caveat that the papers and books on the CMM
and SPI provide a much fuller picture. The papers on the CMM-related articles Web
page are recommended for further exploration of these issues.

Mark C. Paulk, "Investing in Software Process Improvement: An Executive
Perspective."

This presentation discusses some of the empirical evidence on the value obtained from
investing in software process improvement using the Software Capability Maturity
Model (CMM) developed by the Software Engineering Institute (SEI) at Carnegie Mellon
University. Business drivers for process improvement and some challenges in
organization change are described, along with data on the impact on cost, schedule,
and quality of achieving the five maturity levels in the CMM. From an executive
perspective, the crucial point is that continual improvement depends on systematically
addressing the problems facing the organization -- regardless of the improvement
framework selected. This "constancy of purpose" depends on management
sponsorship, support, and investment.

Mark C. Paulk, "People Issues: The 'Soft Side' of Software Process Improvement."

"Our greatest asset is our people." This platitude is frequently followed by
announcements of layoffs, downsizing, and similar Dilbertesque decisions. If people are
the most important single factor in success, how do we incorporate that fact into our
process improvement programs? This presentation provides an overview of "people
issues" for software engineering, management, and process improvement from an
individual, team, and organizational perspective.

Mark C. Paulk, "Considering Statistical Process Control for Software."

The Capability Maturity Model for Software, developed by the Software Engineering
Institute at Carnegie Mellon University, is a model for building organizational capability
that has been widely adopted in the software community and beyond. The Software
CMM is a five-level model that prescribes process improvement priorities for software

http://www.sei.cmu.edu/cmm/slides/slides.html (1 of 6) [3/16/2004 4:46:19 PM]

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/cmm/slides/slides.html?owner=sshrum
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/sei-home.html
http://www.sei.cmu.edu/sei-home.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/tsp/
http://www.sei.cmu.edu/tsp/
http://www.sei.cmu.edu/ideal/ideal.html
http://www.sei.cmu.edu/ideal/ideal.html
http://www.sei.cmu.edu/programs/sepm/risk/index.html
http://www.sei.cmu.edu/programs/sepm/risk/index.html
http://www.sei.cmu.edu/sema/welcome.html
http://www.sei.cmu.edu/sema/welcome.html
http://seir.sei.cmu.edu/
http://seir.sei.cmu.edu/
http://www.sei.cmu.edu/collaborating/spins/spins.html
http://www.sei.cmu.edu/collaborating/spins/spins.html
http://www.sei.cmu.edu/managing/app.directory.html
http://www.sei.cmu.edu/managing/app.directory.html
http://www.sei.cmu.edu/about/acronyms/help.acronyms.html
http://www.sei.cmu.edu/about/acronyms/help.acronyms.html
http://www.sei.cmu.edu/about/overview/sei/initiatives.html
http://www.sei.cmu.edu/about/overview/sei/initiatives.html
http://www.sei.cmu.edu/products/events/events.html
http://www.sei.cmu.edu/products/events/events.html
http://www.sei.cmu.edu/products/courses/courses.html
http://www.sei.cmu.edu/products/courses/courses.html
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html
http://www.sei.cmu.edu/cmm/slides/exec-spi.pdf
http://www.sei.cmu.edu/cmm/slides/exec-spi.pdf
http://www.sei.cmu.edu/cmm/slides/soft.pdf
http://www.sei.cmu.edu/cmm/spc/spc.pdf

Software CMM Presentations

organizations. Level 4 in the CMM focuses on applying quantitative techniques,
particularly statistical techniques, for controlling the software process.

In statistical process control, this means eliminating special causes of variation.
Because the software process is not a repetitive manufacturing or service process, the
application of statistical process control, specifically control charts, has been challenged
by many in the software community. What the CMM has to say about statistical process
management is discussed, along with the issues in applying statistical thinking to the
software process, prerequisites for applying statistical control, and the specific
techniques that should be considered. Examples from real-world software projects
illustrate the challenges in stabilizing the software process and applying different
statistical techniques.

"Panel: Can Statistical Process Control Be Usefully Applied to Software?," Moderators:
Mark Paulk and Anita Carleton, SEI, The 11th Software Engineering Process Group
(SEPG) Conference, Atlanta, Georgia, 8-11 March 1999.

The SEI has advocated the use of statistical process control techniques, specifically
control charts, in recent technical reports, tutorials, and classes, and proposed changes
for Software CMM version 2 explicitly supported the use of rigorous statistical
techniques at maturity level 4. Little of substance has been published, however, on the
use of SPC and control charts in the software industry. Most of what has been
published has been conceptual, and many of the reported attempts to use SPC have
provided little business value. The argument in favor of SPC lies in 1) its admitted value
in other industries, especially manufacturing, and 2) undocumented reports of
successful use for various software processes. It seems clear that SPC for software is
an emerging technique that, while conceptually valuable, is still "shaking down" as a
potentially useful tool for software engineering.

The purpose of this panel is to capture some of the pros and cons from industry use of
this fascinating tool, focusing in particular on the prerequisites for successful use of
SPC and the business value obtained.

Note: The following slides combine presentations from the USA and European SEPG
Conferences. Presenters at the SEPG Conference in Atlanta were Carleton, Keller,
Meade, Hirsh, Wigle, Card, and Paulk. Presenters at the European SEPG Conference
in Amsterdam were Meade, Burr, Hirsh, Heijstek, Curtis, Barnard, and Paulk.

● Anita Carleton, SEI, "Intro - Can Statistical Process Control Be Usefully Applied
to Software?"

● Ted Keller, IBM, "Applying SPC Techniques to Software Development - A
Management Perspective."

● Susan Meade, Lockheed Martin, "Lockheed Martin Mission Systems."
● Adrian Burr, consultant, "TBD."
● Barbara Hirsh, Motorola, "A Case Study of Applying SPC."
● Andre Heijstek, Ericsson, "SPC in Ericsson."
● Bill Curtis, TeraQuest Metrics, "TBD."
● Gary Wigle, Boeing, "Quantitative Management in Software Engineering."
● David Card, Software Productivity Consortium, "Making Statistics Work for

Software Engineering."
● Julie Barnard, United Space Alliance, "Analyzing a Mature Software Inspection

http://www.sei.cmu.edu/cmm/slides/slides.html (2 of 6) [3/16/2004 4:46:19 PM]

http://www.sei.cmu.edu/cmm/spc/panel1999/SPC-Carleton.pdf
http://www.sei.cmu.edu/cmm/spc/panel1999/SPC-Carleton.pdf
http://www.sei.cmu.edu/cmm/spc/panel1999/SPC-Keller.pdf
http://www.sei.cmu.edu/cmm/spc/panel1999/SPC-Keller.pdf
http://www.sei.cmu.edu/cmm/spc/panel1999/SPC-Meade.pdf
http://www.sei.cmu.edu/cmm/spc/panel1999/SPC-Hirsh.pdf
http://www.sei.cmu.edu/cmm/spc/panel1999/SPC-Heijstek.pdf
http://www.sei.cmu.edu/cmm/spc/panel1999/SPC-Wigle.pdf
http://www.sei.cmu.edu/cmm/spc/panel1999/SPC-Card.pdf
http://www.sei.cmu.edu/cmm/spc/panel1999/SPC-Card.pdf
http://www.sei.cmu.edu/cmm/spc/panel1999/SPC-Barnard.pdf

Software CMM Presentations

Process UsingStatistical Process Control."
● Mark Paulk, SEI, "Summary - Can Statistical Process Control Be Usefully

Applied to Software?" - includes European SEPG intro slides

"Panel: What Justifies a Rating of CMM Level 4?" Moderator: Bill Curtis, The SEPG
2000 Conference, Seattle, WA, 23 March 2000.

Fundamental Issue Addressed in the Panel: The fundamental issue being addressed in
this panel are concerns about inconsistency in the criteria being used to assess the
satisfaction of CMM Level 4 Key Process Area goals.

Increasing numbers of assessments are resulting in Level 4 or 5 ratings. However,
many in the CMM community sense considerable inconsistency in the criteria being
used to justify these ratings, especially regarding Level 4 Key Process Areas. Openly
debated issues include 1) whether an organization is required implement control charts
and other classic statistical process control (SPC) techniques, 2) whether there are
statistical techniques other than SPC that are more appropriate to software since it is
primarily a design rather than a manufacturing activity, 3) whether statistical methods
are required at all compared to reasonable use of quantitative data in controlling the
process, and 4) what level of data collection and analysis must be implemented to
achieve quantitative process and quality control. These questions need to be resolved
for the CMM community to achieve consensus on what constitutes a Level 4 capability
and what types of practices will justify a level 4 rating from a CBA IPI. The panel, which
includes CMM authors and Lead Assessors experienced in high maturity assessments,
will discuss and debate the criteria they use in determining whether an organization has
achieved a Level 4 process capability.

Panelists were chosen for their expertise in the CMM or their experience in high
maturity assessments.

● Moderator: Bill Curtis, CMM author & Lead Assessor, TeraQuest Metrics
● Mark Paulk, CMM author & Lead Assessor, SEI "What Justifies A Rating of

CMM Level 4?"
● John Vu, Lead Assessor, Boeing "The Rating of SW-CMM Level 4."
● Ron Radice, Lead Assessor & Process Pioneer, Software Technology

Transition "What Do I Expect to See If I Am Going to Rate an Organization at
Level 4?"

● Charlie Weber, CMM author, TeraQuest Metrics "What Justifies a Rating of
CMM Level 4? (What We Should Have Said!)."

Mark C. Paulk, "Lessons Learned in Process Modeling." 2000 Southeastern Quality
Conference, Atlanta, GA, 30 Oct 2000.

One of the powerful tools used by high maturity organizations is process modeling.
Process models can provide insight into planning, strategic management issues,
process control, operational management, process improvement, technology adoption,
and training. Building useful and usable models is not, however, a trivial exercise. This
paper summarizes some of the lessons learned in selecting a modeling technique,
identifying the important measures to parameterize the model, collecting valid data to

http://www.sei.cmu.edu/cmm/slides/slides.html (3 of 6) [3/16/2004 4:46:19 PM]

http://www.sei.cmu.edu/cmm/spc/panel1999/SPC-Barnard.pdf
http://www.sei.cmu.edu/cmm/spc/panel1999/SPC-Paulk.pdf
http://www.sei.cmu.edu/cmm/spc/panel1999/SPC-Paulk.pdf
http://www.sei.cmu.edu/cmm/spc/panel2000/sepg00-ml4-paulk.pdf
http://www.sei.cmu.edu/cmm/spc/panel2000/sepg00-ml4-paulk.pdf
http://www.sei.cmu.edu/cmm/spc/panel2000/sepg00-ml4-vu.pdf
http://www.sei.cmu.edu/cmm/spc/panel2000/sepg00-ml4-radice.pdf
http://www.sei.cmu.edu/cmm/spc/panel2000/sepg00-ml4-radice.pdf
http://www.sei.cmu.edu/cmm/spc/panel2000/sepg00-ml4-weber.pdf
http://www.sei.cmu.edu/cmm/spc/panel2000/sepg00-ml4-weber.pdf
http://www.sei.cmu.edu/cmm/slides/modeling.pdf

Software CMM Presentations

calibrate it, and applying the insights from the model effectively.

Mark C. Paulk, "Thinking About Change Management in High Maturity Organizations."
Working Conference on Diffusing Software Product and Process Innovations,
International Federation for Information Processing (IFIP) Working Group 8.6, Banff,
Canada, 9 April 2001.

Change management is crucial in today's fast moving world. One of the challenges for
organizations aspiring to Level 5 against the SEI's Capability Maturity Model for
Software is dealing with process and technology change in a "systematic" way. In this
context, systematic implies that the change management builds on the understanding
of variation established at Level 4 and of technology transition and diffusion of
innovation concepts. Systematic also implies a cultural shift that encompasses worker
participation and empowerment concepts. The focus of this paper is on the culture shift
for high maturity organizations and new models of technology transition and diffusion of
innovation that an lend insight into change management needs for high maturity
organization. Several models already widely discussed in the software world will be
reviewed, plus others that add some useful insights.

Mark C. Paulk, "A History of the Software CMM." September 2001.

This presentation provides an overview of the Software CMM's evolution from its
inspirations in Total Quality Management as applied to software to the software process
maturity framework published in 1987 to Software CMM v1.1 as released in 1993.
Issues faced in building the CMM are discussed, including the question of staged
versus continuous architectures. The presentation closes with a brief comparison of the
Software CMM v1.1 with CMMI v1.0, which will replace the Software CMM in 2003. A
table summarizing the key process area changes from the 1987 framework to Software
CMM v1.1 is also provided.

Mark C. Paulk, "Practical SPI." October 2001.

This presentation describes some of the practical considerations associated with
software process improvement. Although focusing on the Software CMM, these
considerations are generally applicable. The recommendations contained in this
presentation are prescriptive. While there may be alternatives that are also effective,
the issues and related recommendations discussed here should be thoughtfully
considered by any organization undertaking a serious SPI effort.

Mark C. Paulk, "Using the Software CMM With Good Judgment." November 2001.

The Software CMM has been criticized as being applicable only to large organizations
and/or large projects. It has also been successfully used across a wide range of
organizational sizes and types, in many different application domains, and with many

http://www.sei.cmu.edu/cmm/slides/slides.html (4 of 6) [3/16/2004 4:46:19 PM]

http://www.sei.cmu.edu/cmm/slides/tcm-hm.pdf
http://www.sei.cmu.edu/cmm/slides/cmm-history.pdf
http://www.sei.cmu.edu/cmm/slides/cmm-history-handout.pdf
http://www.sei.cmu.edu/cmm/slides/practical-spi.pdf
http://www.sei.cmu.edu/cmm/slides/judgment.pdf

Software CMM Presentations

different methodologies. At the same time, CMM-based improvement programs have
failed in many large military/aerospace organizations. The crucial difference between
successful and failed improvement programs, regardless of the environment, is the use
of common sense and good judgment in defining and improving processes. In this
presentation I discuss some of the critical factors in practical software process
improvement for small organizations, small projects, Internet-speed environments, and
agile methodologies. The conclusion is that the Software CMM is a powerful tool for
process improvement when used with good judgment, and that those who lack common
sense are doomed to failure regardless of their approach to process improvement.

Mark C. Paulk, "Understanding High Maturity Practices: A Software CMM Tutorial."
September 2001.

"High maturity," in terms of the Capability Maturity Model (CMM) for Software, implies a
superior process capability for a software organization, yet comparatively few
organizations have achieved the higher levels of maturity -- levels 4 and 5. The lack of
wide-spread experience with high maturity practices is a challenge for both assessors
and process engineers. The purpose of this tutorial is to discuss the fundamental
principles of the Software CMM at the higher maturity levels and some of the effective
engineering and management practices typically found in high maturity organizations.
At the end of this tutorial, attendees should have a better understanding of how to
interpret the Software CMM at levels 4 and 5 and insight into effective implementations
of high maturity practices.

Mark C. Paulk, "High Maturity Practices." April 2002.

This presentation contains the results of the high maturity survey performed in 2001.
The survey results will be described in much more detail in the special report, which
has not yet been published.

Mark C. Paulk, "Agile Methodologies from a CMM Perspective," September 2002.

This presentation discusses several of the "agile methodologies," such as Extreme
Programming and Scrum, from a CMM perspective. The conclusion is that disciplined
processes are compatible with a CMM-based improvement perspective, even if some
forms do emphasize "lighter weight" processes.

Mark C. Paulk, "Comparing ISO 9001:2000 and Software CMM v1.1," September 2002.

This presentation provides a brief overview of the Capability Maturity Model for
Software and of the latest release of the ISO 9000 family of standards for quality
management systems. It then compares the Software CMM and ISO 9001. The
conclusion is that there is major overlap between these two documents, but there are
some areas that each addresses that are not addressed by the other. Due to

http://www.sei.cmu.edu/cmm/slides/slides.html (5 of 6) [3/16/2004 4:46:19 PM]

http://www.sei.cmu.edu/cmm/slides/UnderstandHM.pdf
http://www.sei.cmu.edu/cmm/slides/hmp2001.pdf
http://www.sei.cmu.edu/cmm/slides/agile.pdf
http://www.sei.cmu.edu/cmm/slides/iso9001cmm.pdf

Software CMM Presentations

differences in focus and scope, a mapping between the two is not a simple matter, even
though there is major overlap.

Mark C. Paulk, "Trends in Software Process and Quality," October 2002.

This presentation provides an overview of the current world-wide trends in the arena of
software process and quality improvement. It begins with a discussion of the Capability
Maturity Model for Software developed by the Software Engineering Institute and the
state of the practice in software engineering. Other approaches to software process
improvement are briefly discussed, including the ISO 9000 family of quality
management system standards and the ISO 15504 standard being developed for
software process assessment. Pros and cons of these approaches are discussed in
comparison to the SEI's work.

top | CMM main page

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2004 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/cmm/slides/slides.html
Last Modified: 21 July 2003

http://www.sei.cmu.edu/cmm/slides/slides.html (6 of 6) [3/16/2004 4:46:19 PM]

http://www.sei.cmu.edu/cmm/slides/trends.pdf
mailto: sshrum@sei.cmu.edu?Subject=CMM slides.html
http://www.sei.cmu.edu/cmm/
http://www.sei.cmu.edu/about/disclaimer.html

Capability Maturity Model for Software V2 Archive

Welcome

Capability
Maturity
Modeling

Team &
Personal
Software
Process

IDEAL Model

Risk
Management

Software
Engineering
Measurement &
Analysis (SEMA)

Software
Engineering
Information
Repository
(SEIR)

Software
Process
Improvement
Networks
(SPINs)

Appraiser
Program

Acronyms

SEI Initiatives

Conferences

Education &
Training

Capability Maturity Model® (SW-CMM®) for Software V2
Archive

This Web page archives historical information about the planned Software CMM
version 2.0, originally planned for late 1997, which was halted by the Office of the
Under Secretary of Defense for Acquisition and Technology. See the the CMM
integration Web page for further information.

1998 Archives

● Mappings between ISO 12207, ISO 15504 (SPICE), Software CMM v1.1, and
Software CMM v2 Draft C, posted 5 January 1998

1997 Archives

● News release - SEI to support DOD requirement for CMM integration, posted 16
December 1997

● Deadline for Draft C comments extended, posted 31 October 1997
● SW-CMM v2 release delayed, posted 30 October 1997
● SW-CMM v2 Draft C, posted 22 October 1997
● Risk Management in SW-CMM v2: The Resolution, posted 19 May 1997

1996 Archives

● Change Request Report, October 1996.
● Delaying the release of SW-CMM V2.0, posted 7 October 1996
● Major decisions for SW-CMM v2, posted 6 August 1996
● Prototype key process areas, 1996

1995 (and Earlier) Archives

● Michael D. Konrad, Mark C. Paulk, and Allan W. Graydon,"An Overview of
SPICE's Model for Process Management," Proceedings of the Fifth
International Conference on Software Quality, Austin, TX, 23-26 October

http://www.sei.cmu.edu/cmm/cmm-v2/cmm.v2.html (1 of 2) [3/16/2004 4:46:22 PM]

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/cmm/cmm-v2/cmm.v2.html?owner=cb
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/sei-home.html
http://www.sei.cmu.edu/sei-home.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/tsp/
http://www.sei.cmu.edu/tsp/
http://www.sei.cmu.edu/ideal/ideal.html
http://www.sei.cmu.edu/ideal/ideal.html
http://www.sei.cmu.edu/programs/sepm/risk/index.html
http://www.sei.cmu.edu/programs/sepm/risk/index.html
http://www.sei.cmu.edu/sema/welcome.html
http://www.sei.cmu.edu/sema/welcome.html
http://seir.sei.cmu.edu/
http://seir.sei.cmu.edu/
http://www.sei.cmu.edu/collaborating/spins/spins.html
http://www.sei.cmu.edu/collaborating/spins/spins.html
http://www.sei.cmu.edu/managing/app.directory.html
http://www.sei.cmu.edu/managing/app.directory.html
http://www.sei.cmu.edu/about/acronyms/help.acronyms.html
http://www.sei.cmu.edu/about/acronyms/help.acronyms.html
http://www.sei.cmu.edu/about/overview/sei/initiatives.html
http://www.sei.cmu.edu/about/overview/sei/initiatives.html
http://www.sei.cmu.edu/products/events/events.html
http://www.sei.cmu.edu/products/events/events.html
http://www.sei.cmu.edu/products/courses/courses.html
http://www.sei.cmu.edu/products/courses/courses.html
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html
http://www.sei.cmu.edu/cmmi/
http://www.sei.cmu.edu/cmmi/
http://www.defenselink.mil/news/Dec1997/m12161997_m228-97.html
http://www.sei.cmu.edu/cmm/draft-c/deadline.html
http://www.sei.cmu.edu/cmm/cmm-v2/v2-halt.html
http://www.sei.cmu.edu/cmm/draft-c/c.html
http://www.sei.cmu.edu/cmm/cmm-v2/srm-ann.html
http://www.sei.cmu.edu/cmm/cmm-v2/v2.crr.html
http://www.sei.cmu.edu/cmm/cmm-v2/delay-v2.html
http://www.sei.cmu.edu/cmm/cmm-v2/design.html
http://www.sei.cmu.edu/cmm/cmm-v2/v2.proto.html

Capability Maturity Model for Software V2 Archive

1995, pp. 291-301.
Note that the SPICE model for process management has been significantly
revised since this paper was written. This baseline, however, was the departure
point for much of the CMM v2 architecture work and other papers referenced
here.

● Working papers from the Feb 95 Brainstorming CMM Workshop
● Other working papers and articles

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2004 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/cmm/cmm-v2/cmm.v2.html
Last Modified: 21 July 2003

http://www.sei.cmu.edu/cmm/cmm-v2/cmm.v2.html (2 of 2) [3/16/2004 4:46:22 PM]

http://www.sei.cmu.edu/cmm/cmm-v2/v2.feb95.html
http://www.sei.cmu.edu/cmm/cmm-v2/v2.wp.html
http://www.sei.cmu.edu/about/disclaimer.html

CMM Contact Information

Welcome

Capability
Maturity
Modeling

Team &
Personal
Software
Process

IDEAL Model

Risk
Management

Software
Engineering
Measurement &
Analysis (SEMA)

Software
Engineering
Information
Repository
(SEIR)

Software
Process
Improvement
Networks
(SPINs)

Appraiser
Program

Acronyms

SEI Initiatives

Conferences

Education &
Training

Software Capability Maturity Model® (SW-CMM®)
Contact Information

For general information or questions about the SW-CMM, contact

Customer Relations
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
Phone: +1 412-268-5800
FAX: +1 412-268-5758
E-mail: customer-relations@sei.cmu.edu

top | CMM main page

The Software Engineering Institute (SEI) is a federally funded research and development center
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

Copyright 2004 by Carnegie Mellon University
Terms of Use
URL: http://www.sei.cmu.edu/cmm/contacts.html
Last Modified: 8 January 2004

http://www.sei.cmu.edu/cmm/contacts.html [3/16/2004 4:46:25 PM]

http://www.sei.cmu.edu/about/whatsnew/whatsnew.html
http://www.sei.cmu.edu/about/website/sitemap.html
http://www.sei.cmu.edu/cgi-bin/contactus.cgi/cmm/contacts.html?owner=sshrum
http://www.sei.cmu.edu/about/website/search.html
http://www.sei.cmu.edu/sei-home.html
http://www.sei.cmu.edu/sei-home.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/tsp/
http://www.sei.cmu.edu/tsp/
http://www.sei.cmu.edu/ideal/ideal.html
http://www.sei.cmu.edu/ideal/ideal.html
http://www.sei.cmu.edu/programs/sepm/risk/index.html
http://www.sei.cmu.edu/programs/sepm/risk/index.html
http://www.sei.cmu.edu/sema/welcome.html
http://www.sei.cmu.edu/sema/welcome.html
http://seir.sei.cmu.edu/
http://seir.sei.cmu.edu/
http://www.sei.cmu.edu/collaborating/spins/spins.html
http://www.sei.cmu.edu/collaborating/spins/spins.html
http://www.sei.cmu.edu/managing/app.directory.html
http://www.sei.cmu.edu/managing/app.directory.html
http://www.sei.cmu.edu/about/acronyms/help.acronyms.html
http://www.sei.cmu.edu/about/acronyms/help.acronyms.html
http://www.sei.cmu.edu/about/overview/sei/initiatives.html
http://www.sei.cmu.edu/about/overview/sei/initiatives.html
http://www.sei.cmu.edu/products/events/events.html
http://www.sei.cmu.edu/products/events/events.html
http://www.sei.cmu.edu/products/courses/courses.html
http://www.sei.cmu.edu/products/courses/courses.html
http://www.sei.cmu.edu/publications/publications.html
http://www.sei.cmu.edu/products/products-services.html
http://www.sei.cmu.edu/collaborating/collaborating.html
http://www.sei.cmu.edu/acquisition/acquisition.html
http://www.sei.cmu.edu/engineering/engineering.html
http://www.sei.cmu.edu/managing/managing.html
http://www.sei.cmu.edu/about/about.html
mailto:customer-relations@sei.cmu.edu
http://www.sei.cmu.edu/about/disclaimer.html

Clifford R. Kettemborough

Gardena, CA
August 10, 2009 through August 12, 2009

Managing IT Projects

2.25

1 / 1+ 100%

1 / 1+

This is to certify that:

Cliff Kettemboro
successfully completed

HIPAA Compliance - Countywid

on

CERTIFICATE of COMPL

Sig

01/08/2013

Page 1 of 1Crystal Reports Viewer

1/8/2013https://dhrlmsweb2.isd.lacounty.gov/sabareportxi/SabaReportsInteractiveViewer.jsp

Clifford R. Kettemborough

is hereby Certified as a

Certified International Procurement Professional
(CIPP)

As a purchasing and supply chain management professional, this includes the responsibility to maintain the highest

ethical practice to favorably reflect upon the profession.

Given at Lewes, Delaware, the United States.

Certification ID: CIPP2220822429
Issue Date: August 22, 2022
Expiration Date: NEVER President, Certification Committee

Clifford R. Kettemborough

is hereby Certified as a

Certified International Supply Chain Professional
(CISCP)

As a purchasing and supply chain management professional, this includes the responsibility to maintain the highest

ethical practice to favorably reflect upon the profession.

Given at Lewes, Delaware, the United States.

Certification ID: CISCP2220837729
Issue Date: August 22, 2022
Expiration Date: NEVER President, Certification Committee

��������� ����	
��
�	�����������

���������	������
�	��	���
�	���
�	���������
��	������ ��������������
!��"������ ���

#$%&'()&*$++),&-.&'/&0*-1$(,&2)33)45$($%+6&78$+&$%39

:$4)

;'/65$'(,<=()>)().?)/<@',+)/<A'.'+)&5',+)/<8)'(.&A$$,*)&BCD&@'/-?/&?$4E*)3)(

8)'(.&A$$,*)&BCD&@'/-?/&?$4E*)3)(

F)?-E-).3&,)3'-*/
0*-1$(,&2)33)45$($%+6

G//%)(&,)3'-*/
8)'(.&A$$,*)

)'(.H4$$,)C.)3

@',+)&,)3'-*/
8)'(.&A$$,*)&BCD&@'/-?/&?$4E*)3)(

I6-/&5',+)&-/&'J'(,),&3$&E)$E*)&J6$&6'K)&?$4E*)3),&'**

'?3-K-3-)/&-.&36)&8)'(.&A$$,*)&BCD&@'/-?/&ALL0C

8)'(.&A$$,*)&BCD&@'/-?/

M/)(/&'()&'J'(,),&36-/&5',+)&J6).&36)N&?$4E*)3)&36)

>$**$J-.+&()O%-()4).3P

M/)(/&4%/3&?$4E*)3)&36)&?$%(/)

@',+)&)QE-(N
R),.)/,'NS&T'.%'(N&BUS&VWUXS&YPBV&=A

I6-/&5',+)&J'/&-//%),&>$(&?$4E*)3-.+P

M/)(/&4%/3&?$4E*)3)&36)&?$%(/)

;$J.*$',

��������� ����	
��
�	�����������

���������	������
�	��	���
�	���
�	���������
��	������ ��������������
!��"������ ���

#$%&'

()*+,-.%%/0)

.112-%3)+34)5

678%+'*,'-/*')9

.112-:#;

()*+,-.%%/0)-<=>-?*94@9

()*+,-.%%/0)-7%$40)-*88

A,B049C-D-E,4')/-F'*')9--G),H&9I-

JKLM--G*7I-

#N+4O**,9--G*NI-

#+*B%,P9--G*,I-

#+*,P9--G%@H)9I-

#9'&+4*,&--G*9'I-

#QR+$*S@*,@*--G*QI-

?*C*9*-.)0*S&--G79I-

?490*7*--G$4I-

?%9*,9O4--G$9I-

?+)4QC--G$+I-

2*'*0T--G@*I-

2*'*0T-GU*0),@4TI--G@*H3*0),@4*I-

V)W'4,*--G@9I-

2+,%B%+9O4--G749I-

2S7+*)B--G@SI-

X*,9O--G/*I-

X*,9O-Y&7--G/*H+&7I-

X*3349Z7)B4)00*--G9)I-

X)&'9@C--G/)I-

X%0,%9)+$9O4--G/9$I-

A$%,--G7CI-

))9'4--G)'I-

A,B049C-D-E,4')/-F'*')9--G),H&9I-

A,B049C--G),I-

A98*[%0-D-2%0%7$4*--G)9H@%I-

A98*[%0-D-6,')+,*@4%,*0--G)9I-

A98*[%0-D-.P\4@%--G)9H7\I-

A98*[%0-U),)Q&)0*--G)9H3)I-

A98)+*,'%--G)%I-

A&9O*+*--G)&I-

]̂)B$)--G))I-

:40484,%--G_0I-

:4,0*,/993),9O*--G93H_I-

:̀+%S9O'--GN%I-

:+*,a*49-D-2*,*/*--GN+H@*I-

:+*,a*49--GN+I-

b*)40B)--GB*I-

bT4/C04B--GB/I-

•

Microsoft Certified Professional Transcript
Latest Activity Recorded Mar 13, 2006

CLIFFORD R. KETTEMBOROUGH
6458 N. LEMON AVENUE
SAN GABRIEL, CA 91775 US
cliffrk@earthlink.net

Microsoft Certified Professional ID: 3450816

Microsoft Certification Status

Credential

Microsoft Certified Systems Engineer

Certification \ Version Date Achieved

Mar 13, 2006
Microsoft Windows Server Mar 13, 2006
2003

Microsoft Certified Systems Administrator Feb 21, 2006
Microsoft Windows Server Feb 21, 2006
2003

Microsoft Certified Database Administrator Sep 12, 2005
Microsoft SQL Server 2000 Sep 12, 2005

Microsoft Certified Professional

Microsoft Certification Exams Completed Successfully

Exam ID Description

294 Planning, Implementing, and Maintaining a Microsoft
Windows Server 2003 Active Directory Infrastructure

297 Designing a Microsoft Windows Server 2003 Active
Directory and Network Infrastructure

290 Managing and Maintaining a Microsoft Windows Server
2003 Environment

293 Planning and Maintaining a Microsoft Windows Server 2003
Network Infrastructure

291 Implementing, Managing, and Maintaining a Microsoft
Windows Server 2003 Network Infrastructure

229 Designing and Implementing Databases with Microsoft®
SOL Server(TM) 2000 Enterprise Edition

228 Installing, Configuring, and Administering Microsoft® SQL
Server(TM) 2000 Enterprise Edition

270 Installing, Configuring, and Administering Microsoft®
Windows® XP Professional

Microsoft Corporation
One Microsoft Way
Redmond, WA 98052-6399

For Transcript Inquiries:
mcphelp@microsoft.com

Jul 25,2005

Date Completed

Mar 13, 2006

Mar 02, 2006

Feb 21, 2006

Sep 12, 2005

Aug 29, 2005

Aug 12, 2005

Aug 08, 2005

Jul25,2005

Page 1
Printed On:
5/12/2006

This is to certify that

is a member of Project Management
Institute, the world's leading association
for those who consider project, program,
or portfolio management their profession;
and upholds the Institute's Code of Ethics
and Professional Conduct.

Powering The Project Economy™

PMI® CERTIFIED
MEMBER

Clifford Kettemborough

M
e
m
b
e
r

I
D
:

M
e
m
b
e
r

S
i
n
c
e
:

M
e
m
b
e
r

E
x
p
i
r
a
t
i
o
n
:

C
lifford Kettem

borough

1738129

7/2020

7/2011

Member

PROJECT MANAGEMENT INSTITUTE · CORPORATE SEAL
· P

EN
NS

YLV
AN

IA
 · 1

969 ·

This is to certify that

is a member of
PROJECT MANAGEMENT INSTITUTE,
a global membership association
dedicated to advancing the practice,
science and profession of project
management, and upholds the
Institute’s Code of Ethics
and Professional Conduct.

Making project management indispensable
for business results.®

Clifford Kettemborough

Member

PROJECT MANAGEMENT INSTITUTE · CORPORATE SEAL
· P

EN
NS

YLV
AN

IA
 · 1

969 ·

This is to certify that

is a member of
PROJECT MANAGEMENT INSTITUTE,
a global membership association
dedicated to advancing the practice,
science and profession of project
management, and upholds the
Institute’s Code of Ethics
and Professional Conduct.

Making project management indispensable
for business results.®

Clifford Kettemborough

Clifford R. Kettemborough, Ph.D., D.B.A., Ed.D

is awarded the designation Certified Scrum
Professional¨ on this day, NovemberÊ04,Ê2010, for
completing the prescribed requirements for this

certification and is hereby entitled to all privileges and
benefits offered by SCRUMÊALLIANCE¨.

Member:Ê000099653 CertificationÊExpires:Ê07ÊNovemberÊ2014

Chairman of the Board

Clifford R. Kettemborough, Ph.D., D.B.A., Ed.D

is awarded the designation Certified ScrumMaster¨ on
this day, JuneÊ30,Ê2010, for completing the prescribed

requirements for this certification and is hereby entitled
to all privileges and benefits offered by

SCRUMÊALLIANCE¨.

Member:Ê000099653 CertificationÊExpires:Ê07ÊNovemberÊ2014

Certified Scrum Trainer¨ Chairman of the Board

Jt{ ^» e
x « *̂

H a «
*̂ o

•g" Q

^ S ^
tsj â c>i

s

s
;3

i
s

n

s - 5 :
cr to

« - K to

^ to s ?
C I

m

J* to
•'S a

ts »
n to
to sr
2. « 5 ^ » o

S
2.

I
-ST

-tar

r a
•3* Si

I
' A

*9

ft

Certificate No: LSSGB.9891.001

Clifford R. Kettemborough

Has satisfactorily fulfilled the requirements established
By Redstone Learning for professional attainment in

Lean Six Sigma Green Belt
The certification acknowledges the technical expertise and the ability to

apply quality methodologies to drive business improvement and increase
customer satisfaction.

 July 14th 2016 Nabin Roy, COO

Redstone Learning

	BA Certificate
	Certificate of Completion
	CIPM
	CIPT
	CISM
	Clifford Kettemborough CIITILSM
	Clifford Kettemborough CIPN
	Clifford Kettemborough CIPTM
	Clifford Kettemborough CISCM
	Clifford Kettemborough CISM
	Clifford R Kettemborough, Ph.D., D.B.A., Ed.D-ScrumAlliance_CSM_Certificate
	Clifford R Kettemborough, Ph.D., D.B.A., Ed.D-ScrumAlliance_CSPSM_Certificate
	Clifford R. Kettemborough
	Clifford_R._Kettemborough,_Ph.D.,_D.B.A.,_Ed.D-ScrumAlliance_CSM_Certificate
	Clifford_R._Kettemborough,_Ph.D.,_D.B.A.,_Ed.D-ScrumAlliance_CSP_Certificate
	CMM
	cmu.edu
	Capability Maturity Model for Software (CMM)
	Capability Maturity Models
	Legacy Capability Maturity Models (CMMs)
	Software Capability Maturity Model (SW-CMM)
	Software CMM Articles and Papers
	Obtaining the Software CMM V1.1
	CMM paper IEEE Software
	http://www.sei.cmu.edu/cmm/papers/9001-cmm.pdf
	http://www.sei.cmu.edu/cmm/papers/9001-cmm-profile.pdf
	Software CMM Q&A #1
	CMM Q&A Issue 1
	Software CMM Q&A #2
	CMM Q&A Issue 2
	Software CMM Q&A #3
	CMM Q&A Issue 3
	Software CMM Q&A #4
	CMM Q&A Issue 4
	Rational Planning of SW Project
	SE-CMM v1.1/CMM
	Effective SPI r2 ICSQ96
	ISO 12207-15–
	CMM Small ICSQ98.PDF
	CMM Judgment SQP pdf.PDF
	ISO 15504 and CMM - ICSQ99.PDF
	SPC for PSP - ICSQ10 _2000_.PDF
	SPC for PSP 2000-10-17 ICSQ
	s6pau.lo
	http://www.sei.cmu.edu/cmm/high-maturity/HighMatOrgs.pdf
	http://www.sei.cmu.edu/cmm/docs/biblio.pdf
	Software CMM Presentations
	Capability Maturity Model for Software V2 Archive
	CMM Contact Information

	CQA Certificate Card
	CQA Certificate
	CSM-CSP
	GWU - PM
	HIPAA Compliance
	IPSCMI CIPP Clifford R. Kettemborough 22082022
	IPSCMI CISCP Clifford R. Kettemborough 22082022
	ISO 9000
	Learn Moodle 3.4 Basics Completer
	Microsoft Certificates
	NASA Leadership
	PM Certificate
	PMI Certificate
	PMI MemberCard
	PMI Membership Certificate
	PMP Certificate
	Scrum Foundations Educator
	ScrumAlliance CSP_Certificate
	ScrumAlliance_CSM_Certificate
	Six Sigma Black Belt
	Six Sigma Green Belt
	Y2K

